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ABSTRACT 

The purpose of my research was to further investigate the mechanism by which 

macrocyclic glycopeptides are able to separate enantiomers and to try to develop and expand 

their application in high performance liquid chromatography (HPLC) and other related 

separation techniques. 

We first demonstrated a unique application of enantiomeric separations for chiral 

sulfoxides using macrocyclic glycopeptide chiral stationary phases (CSPs). A set of 42 chiral 

compounds containing stereogenic sulfur was prepared. There were 31 chiral sulfoxide 

compounds, three tosylated sulSlimines and eight sulfonate esters. The separations were done 

using five different macrocyclic glycopeptide chiral stationary phases (CSPs), namely 

ristocetin A, teicoplanin, teicoplanin aglycone (TAG), vancomycin and vancomycin aglycone 

(VAG) and seven eluents, three normal-phase mobile phases, two reversed phases and two 

polar organic mobile phases. Altogether the macrocyclic glycopeptide CSPs were able to 

separate the whole set of the 34 sulfoxide enantiomers and tosylated derivatives. Five of the 

eight sulfonate esters were also separated. The teicoplanin and TAG CSPs were the most 

effective CSPs able to resolve 35 and 33 of the 42 compounds respectively. The three other 

CSPs each were able to resolve more than 27 compounds. The normal-phase mode was the 

most effective followed by the reversed-phase mode with methanol-water mobile phases. 

Few of these compounds could be separated in the polar organic mode with 100% methanol 

mobile phases. Acetonitrile was also not a good solvent for the resolution of enantiomers of 

sulfur-containing compounds, neither in the reversed-phase nor in the polar organic mode. 

The structure of the chiral molecules was compared to the enantioselectivity factors obtained 

with the teicoplanin and TAG CSP. It is shown that the polarity, volume and shape of the 
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sulfoxide substituents influence the solute enantioselectivity factor. Changing the oxidation 

state of the sulfur atom from sulfoxides to sulfonate esters is detrimental to the compound's 

enantioselectivity. The enantiomeric retention order on the teicoplanin and TAG CSPs was 

very consistent: the (<S)-(1)-sulfbxide enantiomer was always the less retained enantiomer. In 

contrast, the (J2)-(2)-enantiomer was less retained by the ristocetin A, vancomycin and 

vancomycin aglycon columns, showing the complementarity nature of these CSPs. The 

macrocyclic glycopeptide CSPs provided broad selectivity and effective separations of chiral 

sulfoxides. 

We further demonstrated another successful enantiomeric separation of a series of 

biologically active racemic analogues of dihydrofurocoumarin using this class of CSPs. The 

macrocyclic glycopeptides proved to be exceptionally selective for this class of compounds. 

All of the 28 chiral analogues were baseline separated on at least one of the macrocyclic 

glycopeptide CSPs. The teicoplanin CSP showed the broadest enantioselectivity with 24 of 

the compounds baseline separated. The TAG and the R CSPs produced 23 and 14 baseline 

separations respectively. All three mobile phase modes, i.e., normal phase (NP), reversed 

phase (RP), and new polar organic modes (PO), were evaluated. The NP mode proved to be 

most effective for the separation of chiral dihydrofurocoumarins on all CSPs tested. In the 

reversed phase (RP) mode, all three CSPs separated a similar number of compounds. It was 

observed that the structural characteristics of the analytes and steric effects are very 

important factors leading to chiral recognition. Hydrogen bonding was found to play a 

secondary role in chiral discrimination in the normal phase and polar organic modes. 

Hydrophobic interactions are important for chiral separation in the reversed phase mode. 

When coupled with circular dichroism, using the exciton coupling chirality method, the 
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enantiomeric elution order and the absolute configuration of some chiral 

dihydrofurocoumarins were successfully determined. 

We also presented a systematic elution order reversal study using these naturally 

occurring chiral molecules as HPLC CSPs. Since these chiral selectors are structurally 

related, they tend to have similar, but not identical, enantioselectivities for most compounds. 

CSPs, of this type, with opposite enantioselectivities are rare. Two exceptions have been 

found to this. The oxazolidiones (starting materials for asymmetric synthesis) and dansyl 

amino acids all show a reversal in enantioselective retention on one of these three related 

CSPs. By using the HPLC assays developed for these compounds, the levels of enantiomeric 

impurities can be measured down to =0.01%. The enantiomeric purity of commercial 

oxazolidiones was determined. 

The last part of this dissertation presented an absolute configuration determination 

approach using exciton coupling chirality method. First of all, a phenyl-substituted chiral 

dihydrofumangelicin, 4-methyl-8-(2-#-phenylethenyl)-8,9-dihydro-2H-furo[2,3-A]-l-

benzopyran-2-one, synthesized in racemic form, has been resolved by HPLC chiral 

separation, and its absolute configuration determined by the non-empirical exciton chirality 

method. The solution conformation has been investigated through NMR and molecular 

modeling methods: two minima found by molecular mechanics and DFT methods are in 

keeping with observed 'H-% V coupling constants and NOE effects. The experimental CD 

spectrum for the second eluted enantiomer shows a positive couplet between 230 and 350 nm 

(amplitude = + 15.7); by application of the exciton chirality method, the absolute 

configuration of this enantiomer at C8 is determined as (6). The experimental spectrum is in 
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very good agreement with the one evaluated by means of DeVoe coupled-oscillator 

calculations, using the DFT calculated geometries. 

Secondly, we extended this method as a general method for dermination of the 

absolute configuration of dihydrofuroangelicins bearing a variety of C-8 substituted double 

bonds, synthesized in the racemic form and resolved through enantioselective 

chromatography. A combined chemical/chiroptical protocol has been developed in which the 

C=C double bonds are replaced with a styrenoid chmmophore through either (i) cross 

metathesis, (ii) Heck reaction, or (iii) a combined method of cross metathesis and Heck 

reaction with about 1 mg sample under mild conditions. The coupling between the styrenoid 

and coumarin chromophores gives rise to clear-cut exciton coupled CD curves, suitable for 

assignments of absolute configurations. The solution conformation of the styrenoid 

derivatives is determined by NMR and DFT molecular modeling; the electronic structure of 

the 7-hydroxy coumarin chromophore is also clarified by semi-empirical and TDDFT 

methods. The conformation thus derived, in conjunction with quantitative DeVoe's coupled-

oscillator CD calculation, establishes the absolute configurations of the coumarins. The 

theoretical study described herein justifies the straightforward approach of the current 

chemical/exciton chirality protocol to this type of dihydrofuroangelicins. 
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CHAPTER 1 

GENERAL INTRODUCTION AND LITERATURE REVIEW 

1.1. General Introduction 

Enantiomeric separations and analysis have become increasingly important in many 

areas of science and technology. In the pharmaceutical industry and medicinal science, for 

example, it is well known that different enantiomers will have different physiological effects 

and biological dispositions. The demand for optically pure enantiomers has grown 

tremendously in recent years. It was reported that the overall sales for enantiomeric pure 

drugs in the year of 2001 exceeded 150 billion dollars. Especially after the announcement of 

the guidelines regarding the development of chiral pharmaceutical products by the US Food 

and Drug Administration in 1992, it has become a routine practice to assess the biological 

activity of each enantiomer of a chiral molecule. Since asymmetric synthesis methods for 

providing desired pure enantiomers is sometimes limited. Enantiomeric separations for these 

chiral compounds are desperately needed in both preparative and analytical scales. 

Macrocyclic Glycopeptides are the fastest growing and newest class of chiral 

selectors in the enantiomeric separation arena. Since they were first introduced by Dr. 

Armstrong in 1994[1], they have made a tremendous impact on separation science. Hundreds 

of related application and mechanistic studies using this class of chiral selectors have been 

published in a relatively short period of time. Although certain binding sites or functional 

groups have been identified as being crucial for the enantomeric separations of particular 

compounds, the chiral recognition mechanism for this class of chiral selectors is not 
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completely understood. This is largely because of the fact that they are the newest class of 

chiral selectors and consequently there have been fewer opportunities for their examination. 

The goal of my research is to investigate further the mechanism by which 

macrocyclic glycopeptides are able to separate enantiomers and try to develop and expand 

their application in high performance liquid chromatography (HPLC), super/subcritical fluid 

chromatography (SFC) and other related separation techniques. 

This dissertation is presented with a general introduction and literature review plus 

two independent parts. The first part includes four complete scientific papers while the 

second part has two. Finally there is a general conclusion which summarizes the work and 

describes prospects for future research. The focus of the Erst part is on methods development 

and mechanistic studies for chiral separations of unusual analytes using macrocychc 

glycopeptide chiral stationary phases (CSPs). This part includes an investigation of elution 

order reversal in HPLC chiral separation using this class of chiral stationary phases (CSPs), 

separation of a unique series of chiral compounds, sulfoxides, where sulfur is the stereogenic 

center, and the separation of dihydrofurocoumarin derivatives. All of these applications were 

success Ail and possible mechanisms of enantiomeric separations using this class of CSPs 

were examined. The second part of this research examines the successful application of the 

exciton coupling chirality protocol for determing the absolute configuration of 

dihydrofuroangelicin enantiomers. 
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1.2. LITERATURE REVIEW 

A book chapter published in Methods in Molecular Biology (Chiral Separations)' 

Tom Ling Xiao, Daniel W. Armstrong 

1. Introduction 

The development of effective, high efficiency enantiomeric separations is a tremendous 

success story(2). The separation of enantiomers is now accomplished by chiral 

chromatographic and electrophoretic methods, which includes gas chromatography (GC), 

high performance liquid chromatography (HPLC), thin layer chromatography (TLC), 

supercritical fluid chromatography (SFC), capillary electrochromatography (CEC), and 

capillary electrophoresis (CE). Enantioselective HPLC is the most widely used 

chromatographic method, both for analytical and preparative purposes, in most branches of 

science and technology including the pharmaceutical and environmental Gelds. The search 

for more effective and universal chiral stationary phases (CSPs) for HPLC is an ongoing and 

challenging topic for separation scientists. 

The most useful and widely used chiral stationary phases (CSPs) are capable of separating a 

great variety of enantiomeric compounds while providing good efficiency, good loadability, 

and long term stability. The macrocyclic glycopeptides (a.k.a. macrocyclic antibiotics) may 

be the most promising chiral selectors in this respect. They are the newest class of chiral 

selectors, Erst introduced by Armstrong in 1994(1). They are the fastest growing and one of 

the most useful classes of chiral selectors in the world today. High efficiency enantiomeric 

separations of a wide variety of biological(l-41), pharmacological(2-39,42-50), agrochemical 

(51,52), and nutritional compounds(53), have been achieved using this class of chiral 

selectors. 

^ Reprinted with permission from Methods in Molecular Biology,(2004), 243(Chiral 
Separations), 113-171. Humana Press, Totowa. 
Copyright © 2004 Humana Press, All rights reserved. 
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Prior to 1994, the use of macrocychc glycopeptides was essentially unknown in separation 

science and technology. Vancomycin has been used as an antibiotic to treat severe 

staphylococcal infections, especially when bacterial resistance to other antibiotics has 

developed(4). The vancomycin-related antibiotics bind to the D-alanyl-D-alanine terminal 

group in the bacteria cell wall, thereby stopping bacterial development(23,54-56). Since the 

target of these antibiotics is the D-alanyl-D-alanine group, it was thought that they could be 

used in the separation of amino acid enantiomers(23). Interestingly, CSPs based on these 

macrocyclic glycopeptides effectively separated a wide variety of different enantiomeric 

compounds. CSPs based on macrocyclic glycopeptides have many of the enantioselectivity 

properties of more complex proteins and other polymeric selectors, with the advantages of a 

smaller size, good stability and good sample capacity(2,7). 

There are literally hundreds of documented macrocychc antibiotics. However, only a few 

appear to be broadly effective as chiral selectors. Three classes of macrocyclic antibiotics 

have been used successfully as chiral selectors. The first type is made up of compounds, 

which consists of a chromophore spanned by an aliphatic bridge. These have been used 

mainly in capillary electrophoresis (CE) applications (15,57-59). The second type consists of 

macrocychc peptides such as thiostrepton. These have had limited use in LC(2,60,61). The 

third and most important type is the macrocychc glycopeptides, which have 3 or 4 fused 

macrocyclic rings. Various saccharide moieties are attached to the fused macrocyclic system. 

The unique structure of the macrocychc glycopeptides and their abundance of functionality 

(e.g. aromatic, hydroxyl, amine, and carboxylic acid moieties, amide linkages, hydrophobic 

pockets, etc.) give them broad selectivity for a wide variety of anionic, neutral, and cationic 

compounds. All of the defined molecular interactions that are necessary for chiral recognition 

are found within these relatively compact structures. These include possibilities for ionic 

interactions, hydrogen bonding, steric, dipole-dipole and interactions as well as 

hydrophobic interactions. This allows for a wide variety of chiral separations in all known 

mobile phase modes (which includes the normal-phase mode (NP), reversed-phase mode 

(RP), and polar-organic mode (PO)). Each separation mode provides simultaneous but 
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different interactions for chiral recognition. This accounts for the large number of chiral 

separations and the variety of types of chiral compounds that are successfully separated with 

this class of CSP. 

The first macrocyclic glycopeptide antibiotic introduced as a commercial CSP was 

vancomycin (Chirobiotic V)(2), followed by teicoplanin (Chirobiotic T)(7). In 1998, after 

having been successfully used in CE chiral separations, ristocetin A (Chirobiotic R) joined 

this group as the third CSP of this family(17). Over 230 chiral separations achieved on 

Chirobiotic R column in three different modes were reported in a single paper by Ekborg-Ott 

et.al.(17). Complementary selectivity to the other two Glycopeptide CSPs was found and the 

column showed excellent stability. However, a drawback for the Chirobiotic R is the high 

cost and scarcity of the ristocetin A chiral selector. The last commercialized member of this 

family of CSPs is teicoplanin aglycon (Chirobiotic TAG)(23), which was produced by 

simply removing the carbohydrate moieties from teicoplanin. The original motive in 

removing the pendant carbohydrate groups was to investigate the role of the sugar units in 

chiral recognition(23). Surprisingly, the new CSP had much improved selectivity for certain 

analytes. Recently, separations using the vancomycin aglycon CSP (VAG, i.e., vancomycin 

with its carbohydrate moieties removed) were achieved in our lab(43). Some improved 

separations were observed on VAG versus V(43). This CSP has not yet been 

commercialized. Avoparcin is another glycopeptide macrocychc antibiotic evaluated as a 

CSP in HPLC by Armstrong's group in 1998 (19). This CSP will not be discussed in detail 

since it is not widely available. However, information on this CSP can be obtained from the 

original reference(19). 

Although the macrocyclic glycopeptides have analogous structures, they have somewhat 

different enantioselectivities. In fact, one of the more useful features of this class of chiral 

selectors is their "principle of complementary separations". This means that if a partial 

enantiomeric separation is obtained with one glycopeptide, there is a strong probability that a 

baseline or better separation can be obtained with a related Chirobiotic CSP using the same 

or a similar mobile phase. The reason for this phenomenon is the sometimes subtle 

differences in the stereoselective binding sites between these related chiral stationary phases. 
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A fast screening approach for chiral HPLC method development, based on this 

complementary feature, was proposed by Wang et al(62). This is discussed in detail in 

section 4.4. 

In a relatively short period of time after their introduction, the macrocychc glycopeptide 

chiral selectors were used successfully in most chromatographic and electrophoretic methods 

including HPLC(1,2,7,9,11-14,16-27,29,31-43,45-52,62-84), HPLC-MS(44,85-89) TLC(3), 

CE(4,5,8,10,15,52,61,69,81,90-101), CEC(28,30,91,102,103), SFC(104-107), and in 

enhanced-fluidity liquid chromatography (EFLC)(108). Over one thousand enantiomeric 

separations have been reported using this class of chiral selectors, including both derivatized 

and undenvatized amino acids, peptides, ^-blockers, hydroxy-acids, amino esters, imides, 

hydantoins, and oxazohdinones, numerous non-steroidal anti-inflammatory compounds, 

lactic acids, and other pharmaceuticals and agrochemicals etc. Both analytical and 

preparative scale applications are reported(71). As was reported in the 2002 Analytical 

Chemistry review on Chiral Separations, " The number of publications in the geld of chiral 

separations in high performance liquid chromatography has remained relatively steady, with 

the exception being a 50% increase in publications using macrocychc glycopeptide-based 

chiral stationary phases"(92). 

2. Materials 

2.1. Structures and properties of macrocyclic glycopeptide antibiotics 

All macrocychc glycopeptide chiral selectors are naturally occurring compounds. Their 

molecular masses are between 1000 and 2100. The original macrocychc antibiotics were 

discovered by scientists at the Eh Lilly Company in the 1950s(4). Vancomycin, ristocetin A, 

and teicoplanin are all active against Gram-positive bacteria(7). They are produced as 

fermentation products of Arepfomyces oneMfo/is, Nocardm and vdcfmop/aM&s 

fezcAomycefzczw, respectively (56,109-112). Macrocychc glycopeptide antibiotics are soluble 

in water, and acidic aqueous solutions, but are less soluble at neutral pH (113). They are 

moderately soluble in polar aprotic solvents (e.g., DMSO, DMF) but insoluble in most other 

organic solvents(l 13). 
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The three dimensional molecular structures of three of the commercialized macrocyclic 

glycopeptides that are used for CSPs have been reported(lO). Figure 1 shows both the 

molecular "space-Ailing" model (Figure 1A) and the corresponding "stick" model (Figure 

IB) for all four macrocycles. They all possess a characteristic "basket-shape" aglycon, which 

consists of a peptide core of complex amino acids and linked phenolic moieties. They are 

positioned to show a profile view of the "C-shaped" aglycon "basket". The colored regions in 

Figure 1A are hydrophilic groups as specified in the captions. The black area denotes the 

more hydrophobic regions, including amido linkages, aromatic rings, and apolar connecting 

carbons. The aglycon basket of all these molecules consists of either 3 or 4 fused macrocychc 

rings. They differ in their size and shape, as well as the geometric arrangement of their 

numerous stereogenic centers and functional groups, which are responsible for their 

enantioselective properties. The macrocycles contain both ether and peptide linkages. They 

make the "aglycon" semi-rigid, but with some flexibility. Two important characteristics of 

the aglycon basket are (1) the openness of the C-shaped aglycon basket and (2) its degree of 

helical twist. Both of these features are illustrated in Figure 3. When the glycopeptides are 

observed in profile (as seen in Figures 1 and 3), "openness" is related to the distance between 

opposite ends of the aglycon. Clearly, vancomycin has the most open aglycon, with their 

shortest end-to-end distance being -9.3 À(10). Teicoplanin and TAG appear to have the most 

closed aglycon (almost cyclic) with the end-to-end distances varying from -4.5 to 5.5 A(10). 

Ristocetin A is intermediate, with end-to-end distances varying 6om -5.2 to 8.8 A(10). 

These variations in the end-to-end distances also are affected by the hehcal twist of the 

aglycon, as shown in Figure 3B. They also affects the shape and morphology of the 

individual macrocychc rings, which form the aglycon "basket"(10). An unstrained 

macrocychc ring can be nearly circular. Strained or deformed rings may be more elongated 

or oval-shaped(10). 

Various numbers and types of small carbohydrates are attached to the aglycon via ether 

linkages. Three of these compounds also have aminosaccharide moieties. These sugar 

moieties, attached to the aglycon basket, are free to rotate and can assume a variety of 

orientations (Figure 1). The glycopeptides are amphoteric, containing both ionizable acidic 
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and basic groups. Thus, they can be positively charged, negatively charged or neutral 

depending on the pH of the mobile phase. 

2.1.1 Vancomycin 

In addition to the common features shared with other macrocyclic glycopeptides, 

vancomycin has a number of unique structural features. It has molecular weight of 1449, 

which makes it the smallest of the three macrocychc glycopeptides (i.e. vancomycin, 

teicoplanin and ristocetin A). It has 18 stereogenic centers, as well as a pendant, freely 

rotating, disaccharide moiety consisting of D-glucose and vancosamine, and an N-methyl 

amino acid side chain around three fused macrocychc rings bridged by Gve aromatic rings 

linked by ether and peptide bonds. Vancomycin has nine hydroxy! groups around the 

"basket-shaped" aglycon and on the attached disaccharide moiety, two amine groups (one 

primary and one secondary), and one carboxylic acid group. All these polar and ionizable 

groups are proximate to the ring structure and are able to offer strong hydrogen bonding and 

electrostatic interactions respectively with solute molecules. The pK's for vancomycin are 

2.9, 7.2, 8.6, 9.6, 10.4, and 11.7 (61,114). Its pi value (isoelectric point, i.e., where 

vancomycin has a net zero charge) is 7.2(10). Below the pi value (which is the normal HPLC 

operational pH range pH=3.5 to 7.5), the ionizable groups should be positively charged. The 

aglycon of vancomycin also contains two chloro-substituted aromatic rings, together with 

seven amido groups and three phenolic groups. The aromatic rings and peptide linkages 

provide some rigidity to the aglycon and provide the opportunity for T-T interactions and 

dipolar interactions, respectively, with small molecules. 

2.1.2 Teicoplanin 

Teicoplanin has many unique characteristics, which make it complementary to vancomycin. 

One of the unusual structural characteristics of teicoplanin is that it has a hydrophobic acyl 

side chain ("hydrophobic tail") attached to a 2-amino-2-deoxy-0-D-glucopyranosyl moiety 

(Figure 1, Table 1). Consequently, teicoplanin is surface active and aggregates to form 

micelles(10,U5). None of other glycopeptides has shown this type of behavior (Table 1). 
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Teicoplanin's critical micelle concentration in unbuffered aqueous solutions is -0.18 

mM(10). As a consequence of this molecular structure, teicoplanin shows a slightly lower 

solubility in water than the other macrocychc glycopeptides(lO). 

Another unique character of teicoplanin is that it has a pi of approximately 3.5. From Table 1 

and Figure 2, we can see that the mobility vs. pH curve is nearly flat between pH 3 and pH 7, 

which means that under normal operational conditions (pH=3.5-7.5), teicoplanin shows a 

slightly anionic character while vancomycin and ristocetin A both show cationic behavior. 

This difference makes teicoplanin somewhat unique among the macrocychc glycopeptide 

antibiotics. 

Teicoplanin has a single primary amine group and a single carboxylic acid group. The 

respective pKa values are around 9.2 and 2.5(9). Furthermore, teicoplanin is unique in that it 

has two amino saccharides, both of which are N-acylated (Figure 1), while both vancomycin 

and ristocetin A have an additional free amine group in an attached aminosaccharide moiety. 

Obviously, this additional amine affects the charge and overall ionization behavior of 

vancomycin and ristocetin A. There is a carboxylic acid moiety on the aglycon of both 

vancomycin and teicoplanin, while the equivalent group on ristocetin A is esterified 

(Figurel). 

In addition to its ionizable groups, teicoplanin has 10 primary and secondary hydroxyl groups 

and four phenolic groups, which provide additional hydrogen bonding sites for chiral 

analytes. The less polar character of the interior of the aglycon "basket" and the ten carbon 

side chain will provide hydrophobic interaction sites. Teicoplanin has three attached 

monosaccharides moieties, two of which are D-glucosamine and one of which is D-mannose. 

There are Ave closely related teicoplanin glycopeptides that have been identified, namely, 

teicoplanin Az-l, A%-2, A%-3, A%-4, and Az-5(116). The five forms of teicoplanin have 

different fatty acid chains attached to the amine group of glucosamine, i.e., A%-1 with (z)-4-

decanoic acid, A%-2 with 8-methynonoic acid, Az-3 with n-decanoic acid, A%-4 with 8-
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methyldecanoic acid, and A%-5 with 9-methyldecanoic acid, respectively. The most common 

teicoplanin glycopeptide is A%-2, which has a molecular weight of 1879.7(116). 

2.1.3 Teicoplanin Aglycon 

The Chirobiotic TAG column is made by covalently bonding the aglycon part of teicoplanin 

to sihca gel via a linkage chain. The sugar moieties are removed by the following 

method(23). First, teicoplanin is dissolved in 30:1/DMSO:80%H2S04 (v:v) at concentration 

around 0.1M. Then the mixture is heated to 65*C for 1.5 hours. The phenoxy linkage of the 

nonylglucosamine is then hydrolyzed. To remove the mannose unit, addition of 80%H2SÛ4 is 

needed (at the same concentration as the starting solution) and the mixture kept at 65°C for 3 

hours. To remove the last N-acetyl-jS-D-glucosamine unit, the temperature is raised to 80°C 

for 24 hours(23). The aglycon of teicoplanin becomes water insoluble after the removal of 

the sugar units from teicoplanin. It consists of the four fused macrocychc rings, which form 

"a semi-rigid basket." It still contains seven aromatic rings of which two are chloro-

substituted, and Ave of which are ionizable phenohc moieties (Figure 1). Because it is just 

the aglycon portion of teicoplanin, the molecular weight drops to 1197. It has only 8 

stereogenic centers, in the meantime, the number of hydroxyl groups also decreases to eight. 

However, the chiral selectivity is not necessarily decreased by the loss of the sugar moieties. 

The single primary amine, carboxylic acid group, and the phenolic moieties control the 

overall charge of the aglycon. These structural features and their effect on enantioselectivity 

will be discussed later in this chapter. 

2.1.4 Ristocetin A 

Ristocetin A is the third macrocychc glycopeptide antibiotic used and commercialized as a 

CSP for HPLC. It is also the largest member of this class, with a MW of 2066. It has the 

greatest number of stereogenic centers (i.e., 37). It contains seven aromatic rings, six amide 

linkages, 21 hydroxyl groups, two primary amine groups and one methyl ester. It has four, 

rather than three, fused macrocychc rings (one twelve-membered, one fourteen membered, 

and two sixteen membered rings) and a greater number and different types of attached sugar 
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moieties. Ristocetin A has a pendant tetrasaccharide and two monosaccharide moieties, 

composed of D-arabinose, D-mannose, D-glucose, and D-rhamnose. As mentioned before, the 

carboxyhc acid group on ristocetin A is esterified (Figure 1). The pi value for Ristocetin A is 

7.5, which means that under normal operational conditions (pH=3.5~7.5) it will show 

cationic behavior. The only other ionizable groups on ristocetin A are the phenohc moieties. 

Thus at operational pH value, these are generally protonated and probably serve mainly as 

hydrogen bonding sites. 

2.2 Commercially available Glycopeptide Antibiotic Chiral Stationary Phases 

2.2.1 Preparation of Glycopeptide Antibiotic CSPs 

As mentioned before, the designations for commercialized macrocyclic glycopeptide CSPs 

for HPLC are Chirobiotic V, Chirobiotic R, Chirobiotic T, and Chirobiotic TAG based on the 

first letter of the corresponding glycopeptide chiral selectors attached to a 5 pm spherical 

sihca gel. The bonding reagents or linkage chains may be organosilanes that are terminated 

by carboxyhc groups, amine groups, epoxy groups and isocyanate groups. Examples of such 

reagents are 2-(carbomethoxy)-ethyltrichlorosilane, 3-aminopropyldimethylethoxysilane, and 

(3-glycidoxypropyl) trimethoxysilane etc. Therefore, the linkage that covalently attaches the 

macrocycle to the tethers attached to sihca may be an ether, thioether, amine, amide, 

carbamate or urea(61,114). Below are examples showing the attachment of Glycopeptide to 

silica employing 3-isocyanatopropyltriethoxylsilane (A and B). 

Sihca 
surface 

%> Si(CHz)3NHC 
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C) 
Silica 
surface 0 %>Si(CH2)3NHCNH(CH2)3NHCNH 

EtO O O 

In the above diagrams, the "CSP" stands for the macrocyclic glycopeptide CSPs. Diagram A) 

and B) represent the CSPs react with 3 -isocyanatopropyltriethoxylsilane through a hydroxyl 

group or an amino group forming a carbamate or a urea linkage respectively. Diagram C) 

also shows the chiral selector linked to y-aminopropylsilanized silica gel via an alkyl 

diisocyanate moiety(61,114). On average, there are four linkage chains to every chiral 

selector(2). 

Overall, these macrocyclic glycopeptide CSP are much more stable than traditional protein 

CSPs and have much higher loading capacities. In comparison to the cellulose and amylose 

phases, the Glycopeptides CSPs can tolerate a much wider range of solvents and 

consequently have greater versatility, stability, and longevity (71). 

2.2.2 Chiral selector coverage 

In HPLC, chiral selectors can be used as mobile phase additives or as part of the CSPs. In the 

case of as CSPs, the column loading (a.k.a. coverage of the chiral selectors) can affect 

retention, selectivity, efficiency, and enantioresolution. A systematic study of the effect of 

the surface coverage of these chiral selectors on column efficiency and enantiomeric 

selectivity was done(7,22). Surface coverage can be controlled by altering the initial reaction 

ratio (of selector to silica gel), the selector concentration, the reaction time, reaction 

temperature, and the other relevant reaction conditions. Separations were compared based on 

their capacity factors (k'), selectivity values (o), efficiencies (N) and resolution (Rs) for 

different coverage columns (high, medium and low) in all three mobile phase modes. It is 

reasonable that the retention is longer on the higher coverage CSP, which provides a greater 

number of chiral selector adsorption sites. However, the increase in selectivity factor (a) is 

relatively smaller. For most of the compounds, both shorter retention times and comparable 
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efficiencies and selectivities were achieved on medium coverage CSP for ristocetin A CSP 

(22). As can be seen from Figure 4, it is the more retained (i.e., the second eluting) 

enantiomer of each analyte that is most affected by changes in the loading of the chiral 

selectors on the CSP. 

2.2.3 Chirobiotic Column care and stability 

In order to get the best results and extend the column lifetime, the following column care 

steps should be followed: 

1. Both new column and used columns that may display decreased resolution should be 

conditioned first with 50/50:CH3CN/50mM NH4OAC for 20 column volumes 

(sometimes, a buffer at an opposite range of the pH is good if the column has been 

used at one specific pH for a while), followed by 10 column volumes of HPLC grade 

water. Finally wash with 10 column volumes of organic solvent, i.e., acetonitrile or 

ethanol. This procedure will eliminate removable contaminants and adsorbed 

components that could block important binding sites on the CSP. 

2. A test compound for a specific mobile phase should be selected to evaluate the 

performance of a specific Chirobiotic column (this is also referred to as the selectivity 

control test). The following table lists suggested test conditions for different 

Chirobiotic columns. The test compounds and the corresponding test conditions are 

chosen in order to achieve barely baseline separations so that decreased column 

performance (i.e., resolution and retention times) can be easily detected. 

Table 2. Recommended Selectivity Test Compounds and Conditions for Chirobiotic 

Columns 

CSPs Test compound Mobile phase Retention times (min) 

Chirobiotic V Nefopam 100/0.1 %:MeOH/NH,TFA 13.4, 14.4 

Chirobiotic T Phenylalanine 30/70: EtOH/HzO 5.2, 6.1 

Chirobiotic TAG Ornithine 20/80:MeOHZO. 1M NaHzP04 7.2, 8.3 

Chirobiotic R Ketoprofen 100/0.01 %:MeOH/NH4QAc 6.9, 7.4 
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3. Because different mobile phase modes can be employed when using Chirobiotic 

columns, care should always be exercised in switching from one mobile phase to 

another. Normally Chirobiotic columns are best stored in isopropanol due to its 

weaker polarity, solubility properties, and good compatibility to any kind of mobile 

phase solvent. When switching from the polar organic mode, methanol should be first 

employed to remove acids and bases especially when trifluoroacetic acid was used. 

The column should be washed while it is connected to the system in order to purge all 

system lines and the detector cell. In switching from the normal phase mode, the 

column should be washed with ethanol Erst to get rid of hexane or other organic 

nonpolar solvents. When switching from the reversed phase mode, wash the column 

with water Erst and then follow with neat ethanol. 

4. It is necessary to be aware of the pH stability range of sihca gel based Chirobiotic 

columns, which is usually from 3.5 to 7.5. Strong acids (pH<2.0) or bases (pH>8) 

will cause column damage. Running with a pure water mobile phase should be 

avoided or at least reduced. A short presaturation column of 40 |nn sihca gel prior to 

the injector is useful for the Chirobiotic columns to extend their lifetime when using 

aqueous or reversed phase mobile phases. The function of this column is to saturate 

any water-containing mobile phase with silicic acid. It has an added benefit of 

filtering the mobile phase. 

5. Never store columns, even for a short period of time, in buffer. This may cause the 

columns to clog or become damaged if the buffered solvent evaporates and 

precipitation occurs. Wash the column with water after using buffer solvents. Then 

flush the column with ethanol, methanol, isopropanol or acetonitrile. 

3. Methods 

Chiral Recognition Mechanism and Method development 

3.1 Chiral Recognition Mechanism 
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Chiral recognition refers to the ability of the CSP to interact differently with two 

enantiomers. In most cases, this also leads their separation. Chromatographic separation 

depends on the ability of the CSP to preferentially interact with one of the analyte 

enantiomers when forming somewhat different, relatively short-lived, transient 

diastereomeric complexes. Separation is achieved based on the difference in retention times. 

The interaction of two enantiomers with a CSP, can be expressed as the difference in free 

energy -A%^ AG (i.e., the free energy difference for the transfer of the enantiomers between 

the mobile phase and the stationary phase). It can be calculated from the separation factor, 

according to the following equations: 

—A],2 AG = A%G - A]G 

-Ai j AG - RT In / k, = RT In a 

Here, k% and ki are the retention factors of the two enantiomers. Thus, chiral discrimination 

can be expressed in thermodynamic terms. It usually turns out that only small energy 

differences are needed for the chromatographic resolution of enantiomers. 

Understanding the chiral discrimination mechanism is useful when developing an optimum 

separation method for HPLC using macrocychc glycopeptide CSPs. Although there is some 

debate about its simplistic nature, most chiral recognition models are still based on the three-

point interaction rule, where a minimum of three simultaneous interactions between at least 

one enantiomer and the chiral stationary phase are required. However, the complex structures 

of macrocyclic glycopeptide CSPs can make it difficult to understand the exact interactions 

that lead to chiral recognition. Almost all possible intermolecular interactions leading to 

chiral recognition are available with macrocyclic glycopeptide CSPs. This is one thing that 

contributes to their wide applicability as chiral selectors. Another factor that increases the 

applicability of these CSPs, but also makes their mechanism of action harder to define, is that 

there can be different interactions in different chromatographic modes. 

3.1.1 Reversed Phase Mode 
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In the reversed phase mode, as with achiral HPLC stationary phases, the glycopeptide CSP 

acts as a relatively nonpolar media compared to the polar hydroorganic mobile phase. 

Hydrophobic interactions between glycopeptide CSPs and chiral analytes were proposed by 

Armstrong et al(2) for the reversed phase mode and confirmed by other researchers(82). 

Thus, hydrophobic interactions between the nonpolar part of an analyte and the interior of the 

glycopeptide basket, is a dominant factor in retention and may also be one of the important 

factors contributing to chiral recognition. The possible hydrophobic interaction sites are 

shown as the black areas in Figure 1. Additional interactions that can lead to chiral 

recognition include electrostatic interactions, hydrogen bonding, dipole-dipole interactions, 

and steric repulsive interactions. Which interactions are most important for a specific 

compound, depends on the nature of that analyte (i.e., its size, geometry, number and type of 

functional groups, flexibility, etc) as well as the nature of the mobile phase used. 

Electrostatic interactions can affect both retention and enantioselectivity. Figure 5 and Figure 

6 show the pH effects on the retention factor, k, for dansyl-amino acids(82). An inflection 

point was observed for all the k versus pH plots as well as the selectivity factor versus pH 

plot. This point is very close to the pKa value of the solute amino group, which is 4.5. Below 

this point, the amine group of the analyte is protonated and retention is significantly 

increased. This could be attributed to the ionic interaction between protonated amine group 

of the analyte and the carboxylate group of the CSP. However, the selectivity factor, % 

decreased somewhat (Figure 6). This reveals that the electrostatic interaction between the 

carboxylate group on the CSPs and the amine group on the analyte is effective only for 

increasing retention but not for enhancing chiral recognition of dansyl-amino acid 

enantiomers. After a comprehensive study, Peyrin, et al.(82) verified both 

thermodynamically and experimentally that the interaction between the amine moiety of 

teicoplanin CSP and the carboxylate group of dansyl-amino acids plays a crucial role in 

chiral recognition mechanism, which was consistent with previous results (7,9,11-

13,23,42,66,74). Nair et al. reached a similar conclusion in 1996 using vancomycin as the 

chiral selector in a CE study(13). This was done by forming a copper complex that blocked 

the secondary amine group on the aglycon portion of vancomycin( 13). 
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Additional evidence also was provided by the huge difference in selectivity when separating 

enantiomers of the dipeptide Ala-Gly and Gly-Ala (9). The selectivity factor (a) was 

signiûcantly increased from 1.15 for DL-Ala-Gly to 10 for Gly-DL-Ala, while the only 

difference between these two peptides is the proximity of the terminal carboxylate group to 

the stereogenic center. In Gly-DL-Ala, the carboxylate group is directly connected to the 

stereogenic center while that of the DL-Ala-Gly is five atoms away from the stereogenic 

center. This result clearly showed the essential role of the teicoplanin amine group as well as 

the analyte carboxylate group (and its proximity to the chiral center) in the chiral recognition 

mechanism(9). In addition, the fact that chiral compounds with acidic groups (i.e., 

carboxylate, sulfonate, phosphate, etc.) are most easily resolved further support this as one of 

the important chiral interaction sites for acidic or anionic compounds. 

3.1.2 Normal Phase Mode 

In the normal phase mode, (where the mobile phase is nonpolar), the CSP behaves as a polar 

stationary phase. The strongly polar functional groups and aromatic rings of the CSP provide 

the interactions needed for both retention and chiral recognition. Therefore, hydrogen 

bonding, T T interactions, dipole stacking, steric repulsion, and in some cases electrostatic 

interactions are the dominant interactions that occur between the CSP and the analytes in the 

normal phase mode. Note that the absence of water, by definition, precludes the possibility of 

hydrophobic interactions contributing to either retention or selectivity. However, in the 

presence of nonpolar solvents (as in the normal phase mode), the enhanced T T and dipolar 

interactions often make up for the lost hydrophobic interactions that were important in the 

reversed phase mode. 

3.1.3 New Polar Organic Mode 

In the new polar organic mode, no nonpolar solvents (like hexane) are used. Generally, the 

main component in the polar organic mobile phase is an alcohol (e.g., methanol, ethanol, or 

isopropanol). The dominant interactions between the analyte and CSP usually involve 

hydrogen bonding, electrostatic, dipolar, and steric interactions (or some combination 
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thereof)(34). Chiral analytes suitable for this kind of mobile phase have some special 

requirements (see Note 1). 

It should be noted that, the dominance of different types of interactions in the reversed phase 

mode versus the normal phase mode means that the chiral recognition mechanism can be 

very different in these modes. Consequently very different types of chiral molecules often 

can be separated in one mode vs. the other. 

3.1.4 Role of Carbohydrate Moieties 

The role of the pendant carbohydrate moieties in chiral recognition was studied by 

comparing separations performed on the Chirobiotic TAG and T columns(23). A significant 

selectivity increase was observed for separation of amphoteric molecules like the alpha, beta, 

gamma and cyclic amino acids as well as some other kinds of acids. This indicated the 

importance of the aglycon portion in chiral recognition. In this case, the carbohydrate 

moieties of the native teicoplanin molecule may intervene in the chiral recognition process in 

at least three possible ways: (i) steric hindrance, where the sugar units occupy room on the 

aglycon, which limits the access of other molecules to binding sites; (ii) blocking a possible 

interaction sites on the aglycon, where two sugars are linked to the aglycon through phenol 

hydroxyl groups and the third sugar is linked through an alcohol moiety (Figure 1); (iii) 

offering competing interaction sites, since the carbohydrates are themselves chiral and have 

hydroxyl, ether, and amido functional groups available for interaction(23). 

Conversely, the resolution of some analytes, such as amino alcohols, which were excellent on 

Chirobiotic T, decreased on the Chirobiotic TAG column. This indicates the importance of 

the sugar units for enhancing chiral recognition for specific types of analytes. 

As with the TAG CSP, removal of the sugar units from native vancomycin improved the 

selectivity of some neutral sulfoxides molecules(43). However, it completely destroyed chiral 

recognition in a series of racemic esters(HT). This means that the carbohydrate moieties 

enhanced the enantioselective separation of some molecules, but decreases it for others. 
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Steric effects were also found to be very important for chiral recognition in all mobile phase 

modes. Bulky groups such as phenyl groups or methyl groups attached on or next to the 

stereogenic center can effect chiral separation when using macrocyclic glycopeptide 

CSPs(14,43). 

3.2. Method Development 

Before using a glycopeptide CSP, one should first examine the analyte structure. 

Macrocyclic glycopeptide CSPs are able to separate many kinds of molecules. However, 

molecules with the following characteristics are very likely to achieve baseline separation on 

these CSPs, if they have 1) ionizable groups to provide electrostatic interactions, 2) hydrogen 

bonding groups, 3) hydrophobic groups, 4) Bulky substituents next to or close to the chiral 

center, 5) One relatively polar functional group attach to or close to (a or 0) the stereogenic 

center, and 6) aromatic groups capable of interactions. 

3.2.1 Optimizing Chiral Separations 

Given the variety of the functionality that exists within the macrocyclic glycopeptides, 

Chirobiotic columns can work well in reverse phase, normal phase and polar organic modes. 

Most of the time, higher efficiencies are observed in the polar organic mode and normal 

phase mode. The ability to operate in different modes can be advantageous since different 

compounds separate best in different modes. If the polar organic mode is applicable (see 

Note 1), it is usually the best choice to start with. The solubility of the analytes in different 

solvents also affects the choice of the mobile phase modes, please refer to Note 2. 

3.2.1.1 Reversed-phase Mode 

Chirobiotic columns separate many compounds in the reversed-phase mode. Optimization of 

reversed-phase separations are done in much the same way as optimizing achiral separations 

on CIS columns. It is done by controlling the type and the percentage of organic modifier 

and other additives, the type and pH of the buffer, ionic strength, flow rate, and the 

temperature. These factors will be discussed below. 
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3.2.1.1.1 Organic modifier 

The effect of organic modifier concentration on the retention of 5-methyl-5-phenylhydantoin 

in the reversed phase mode is shown in Figure 7(2). A typical U-shaped curve was obtained 

when plotting retention and resolution versus composition of organic modifier/aqueous 

solution (as was previously noted with cyclodextrin-based CSPs)(2). Longer retention and 

better resolution were usually observed in both the high and low concentration regions of 

organic modifier. This retention behavior clearly indicated that the importance of 

hydrophobic interactions between the analyte and the macrocycle at higher concentrations of 

aqueous buffer(2). When using higher concentration of organic modifier, hydrophobic 

interactions no longer contribute to retention. However, other interactions become 

increasingly dominant (e.g., hydrogen bonding, dipolar interactions, etc.). 

The type of organic modifier can affect both selectivity and efficiency. If no separation is 

observed with the first solvent choice, switching to a different organic modifier is highly 

recommended. Figure 8 shows effects of different types of organic modifiers in the RP mode 

using vancomycin as the CSP selector. A variety of organic modifiers can be used to affect 

selectivity including methanol, ethanol, and isopropanol, acetonitrile (ACN), tetrahydrofuran 

(THF), etc. As shown in Figure 8, different macrocyclic glycopeptide CSPs have a different 

optimum type of organic modifier. For detail about choice of types of organic modifiers, 

please refer to Note 3. A typical starting composition ratio is 10/90: ACN/Buffer, pH 3.5-7.0, 

while the composition of 20/80 is recommended when using alcohol as modifier. 

Figure 9 shows that the retention behavior of amino acids in the reversed phase mode is 

different from that of most other analytes. Amino acids often have smaller retention factors 

with water-rich mobile phases. This phenomenon may be due to the higher solubility of 

amino acids in water than in almost all other solvents. In addition, it was shown that the 

electrostatic interaction between the amino acid and the CSP is so strong that organic 

modifier concentration does not affect the retention and selectivity factor as much as it does 

other analytes(7). The resolution factor (Rs) does change with the mobile phase composition. 

This is because the Rs value depends on both the selectivity and the efficiency. 
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3.2.1.1.2 Buffers 

Buffers are widely used in the mobile phase for Chirobiotic columns to control the ionization 

of both the analyte and the CSP. In addition, the buffer has ionic strength effects, and affects 

the selectivity for certain compounds via secondary interactions between the buffer and CSP 

and/or buffer and analyte. The use of buffer can increase the efficiency of the separation 

significantly(118). To obtain efficient and reproducible separations in the reverse phase 

mode, some buffers are essential for separations even for neutral compounds. For most 

commonly used buffers, please refer to Note 4. 

Macrocyclic glycopeptides have ionizable groups as proteins do, therefore, their charge and 

perhaps their conformation can vary with the pH of the mobile phase. As mentioned 

previously in section 2.1, pH will have different effects with different Chirobiotic columns 

due to variations in their ionizable functional groups and their PI values. 

Within the operating pH range (3.5 to 7.5), the strength of the short-lived complex formed by 

the CSP and the analyte can depend on the charge of the analyte. The charge of the analyte 

will in turn be affected by the pH of the mobile phase. Vancomycin and ristocetin A are both 

in cationic form, while teicoplanin and most amino acid analytes exist in the zwitterionic 

form (i.e. with an anionic -COO group and a cationic -NH3" group). Changes in the pH of 

the mobile phase can change the ionization of both the analyte and the CSP. Therefore, pH 

can affect the interaction mechanism even if the analyte is a neutral molecule. As a general 

rule, the starting pH should close to the pi value of glycopeptide antibiotics. Alternatively, 

test runs can be made at pH 4 and 7. After Ending which pH extreme produces the optimum 

separation, adjust the pH to 0.5 pH unit above or below the pK of the analyte. 

3.2.1.2 Normal-phase Mode 

Macrocyclic glycopeptide CSPs effectively separate a variety of compounds in the normal-

phase mode. There is no solvent induced denaturation or any irreversible change in these 

CSPs(2,43). One advantage of using Chirobiotic columns in the normal phase mode is the 

higher efficiency of most separations. Complementary selectivity to the reverse-phase mode 
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also is found in the normal-phase mode (i.e., even if no separation was observed in the RP 

mode, it may be obtained by switching to the NP mode, or vice versa). In normal phase 

HPLC, hydrogen bonding, ir-vr interactions, dipole-dipole stacking, and steric interactions are 

more important. Obviously, hydrophobic interactions are not relevant. 

In normal phase HPLC, retention is controlled by adjusting the percentage of a polar organic 

modifier such as ethanol or propanol. Figure 10 shows the effect of added organic modifier 

on the retention of two pairs of enantiomers in the normal phase mode. For all enantiomers, 

retention is decreased as the percentage of organic modifier is increased. However, the exact 

effect of the mobile phase composition varies somewhat from compound to compound. Also 

it was observed that resolution can be dramatically changed by using different modifiers. 

Usually this results from a change in the efficiency of a separation. For example, the 

separation efficiencies with hexane/ethanol mobile phase mixtures are usually higher than 

that with hexane/isopropanol mixture on macrocyclic glycopeptide CSPs. 

Different combinations of polar and non-polar solvents can affect the selectivity of a 

separation as well. The most commonly used non-polar solvents for Chirobiotic CSPs are 

hexane or heptane. Methyl ferf-butyl ether (MtBE) was also found to be a useful non-polar 

solvent in some cases, when combined with alcohol or acetonitrile modiûers(43). Recently 

this unusual solvent combination was used with Chirobiotic V and VAG columns to separate 

racemic sulfoxide compounds(43). A significant increase in the number of separations was 

achieved when switching the mobile phase of Hex/EtOH to MtBE/EtOH, while the opposite 

effect was observed on Chirobiotic T and Chirobiotic TAG column. 

The most common organic modifiers are alcohols (i.e., ethanol and isopropanol). Most of the 

time, the ethanol is the better organic modifier in terms of efficiency and resolution. 

However, it is worthwhile to mention that methanol is slightly soluble in hexane (about 1% 

v/v). Thus, in normal phase separations that require very little polar organic modifier, this 

may be an option. It was also reported that halogenated solvents as well as DMF and dioxane 

are sometimes useful on Chirobiotic CSPs in the normal phase mode(71). 
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Once a separation is achieved, adjusting other parameters to gain better resolution is 

necessary. These parameters include percentage and type of modifier, as well as small 

amounts of other additives, including some acids or bases. 

3.2.1.3 New Polar-Organic Mode 

The new polar-organic mode is a modification of the polar organic mode used with 

cyclodextrin bonded phases(l 19,120). Subsequently, this approach was found to be highly 

effective with macrocyclic glycopeptide CSPs (22,34,121). 

This mode is more closely related to the normal phase mode than to the reverse-phase mode. 

Generally, the main component in the polar-organic mobile phase is an alcohol (e.g., 

methanol, ethanol, or isopropanol) with a very small amount of acid/base added to effect 

retention and selectivity. This mobile phase can be considered as an "extreme" case of the 

normal phase mode, or an "extreme" case of the reverse-phase mode. Methanol and ethanol 

are usually the best polar organic solvents when using the ristocetin A, teicoplanin and 

teicoplanin aglycon columns. If not enough retention is obtained, acetonitrile is added to the 

alcoholic mobile phase at varies ratios to gain an appropriate retention time. 

There are usually two different factors that need to be adjusted to optimize a separation using 

polar organic mobile phases. The first one is the absolute amount of acid and base added, 

which is essential for optimization of retention and the second one is the relative ratio of acid 

to base, which controls selectivity (see Note 5). Figure 11 shows the effect of added acid and 

base on resolution in the polar organic mode. 

One advantage of the polar organic mobile phase is that it can dissolve many analyte salts 

(i.e., amine hydrochlorides and sodium carboxylates etc.) that can not be dissolved with 

traditional normal phase solvents(119). Prior to the development of the polar organic mode, 

these more polar analytes and salts could only be separated in the reversed phase mode. 

Another advantage is that polar organic mobile phases are compatible with reverse phase 

solvents when these two formats are used in achiral-chiral column switching 

procedures(45,122-124). 
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The polar-organic mode should be considered first when doing methods development for 

analytes that meet the previously mentioned structural criteria (.see Note 1). This mobile 

phase system offers several advantages such as simplicity, versatility and high efficiency. In 

addition, it uses methanol, which is a relatively inexpensive, less toxic solvent. 

3.2.2 Miscellaneous Approaches for Improving Selectivity and Resolution 

3.2.2.1 Temperature Effects 

Temperature can effect the retention and resolution of chiral analytes on Chirobiotic columns 

(14,20,44,92,125,126). The reason for this can be attributed to a change in the binding 

constant of a solute to the CSP with temperature. Studies on the effect of temperature on 

separations using Chirobiotic V, Chirobiotic T, and Chirobiotic R columns in both normal-

phase and reverse-phases have been reported(2,20,44,125). A systematic study of 

temperature effects on the resolution of 4-benzyl-2-oxazolidinone on vancomycin was done 

by Scott et al (75). It was observed that the temperature effect on the retention factor (k), 

separation factor (a), peak-to-peak separation distance, and efficiency (i.e. peak width) are all 

affected by temperature. Temperature and solvent composition are independent in terms of 

their effects toward the above factors. Usually an increased resolution can be achieved by 

lowering the separation temperature. 

Figure 12 shows the effect of temperature for enantioselectivity of beta-methylphenylalanine 

separated on a Chirobiotic T column(14). This figure shows that poor resolution was 

observed at ambient temperature but improved resolution was observed at both higher and 

lower temperatures( 14). There are two different temperature related effects on enantiomeric 

resolution(20). One is the thermodynamic effect, which is responsible for the observed 

decrease in the selectivity factor (a) when temperature is increased. This is due to the 

partition coefficients and therefore the Gibbs free energy change (AG°) of transfer of the 

analyte between the mobile phase and the stationary phase with temperature( 125). The other 

kinetic effect produces an increase in efficiency with an increase in temperature. This results 

from the decrease in viscosity and the increase in the analytes diffusion coefficients. In the 
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case of Figure 12, the latter kinetic effect dominates at higher temperature and the 

thermodynamic effect is dominant at lower temperature. There are two different mass 

transfer effects here. One is mobile phase mass transfer, where a reduced mobile phase 

viscosity occurs as temperature increases. However, an increase of temperature also increases 

the diffusion coefficient of the solute in both the mobile phase and the stationary phase, and 

it decreases the viscosity of the stationary phase (increasing stationary phase mass transfer). 

Therefore, a temperature increase usually provides a trade-off in terms of resolution. The 

increased efficiency is good for resolution, while the lessening of the peak-to-peak separation 

is bad for resolution. 

It has been observed that changing the temperature has a greater effect on the retention of 

solutes in normal-phase chromatography than reverse-phase(20). Higher temperatures (>40 

°C) can racemize some chiral compounds. Lower temperatures improve the separation for 

most compounds(44). However, the temperature effect must be determined on a case-by-case 

basis. The normal starting temperature is ambient temperature. Variations in temperature can 

be controlled by using a thermostated column temperature control device. 

3.2.2.2 Flow Rates 

The effect of flow rate on resolution is less pronounced with Chirobiotic columns than other 

factors. However, a general phenomenon observed with chiral stationary phases that have 

inclusion pockets is that there is an increase in resolution with a decrease in flow rate(71). 

This effect was also observed for cyclodextrin-based columns particularly in the reverse-

phase mode. Decreasing the flow rate increases the retention time, but in return, better 

resolution is obtained. Usually flow rate does not affect the enantioselectivity factor (a), but 

does affect the separation efficiency. This is reflected by the inverse relationship between 

resolution (Rs) and flow rate. Flow rates <0.5 ml/min are not very common since it will not 

produce further significant increases in resolution. 

In the polar-organic mode, smaller effects have been observed. While in normal phase mode, 

no observable effects were shown on selectivity by increasing the flow rate up to three times 
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faster than the original conditional). However, the resolution is affected slightly due to the 

change in efficiency. Consequently, higher flow rates are often used for normal phase 

separations as long as the back pressure is not excessive. Normal phase flow rates ran as high 

as 5 ml/min have been used in our lab. High efficiency normal phase separations are 

especially appealing to industry. For reverse phase LC, flow rates around 0.5 to 1.5 ml/min 

are recommended. 

3.23 Supercritical Fluid Separations 

It is worthwhile to mention that super/subcritical fluid chromatography (SFC), is a high 

speed chiral separation approach which can substitute for normal phase HPLC separations. It 

can be advantageous for industrial and preparative-scale chiral separations (107,127,128). 

SFC separations offer rapid column equilibration times, simple eluent compositions (i.e., 

CO2 and an organic modifier such as methanol and/or organic acids and bases), and less 

waste solvent generation. Due to the very low viscosity of the SFC eluent, faster flow rates 

(greater than 4 mL/min) are frequently utilized. Normally, chiral separations using SFC can 

be achieved in less than 15 minutes(107). One drawback of this technique is that the 

observed peak shapes are not as smooth and symmetrical as those obtained in HPLC normal 

phase separations(107). This effect may result from the variation in the density and viscosity 

of the super/subcritical fluid due to the SFC operating conditions (i.e., temperature and 

pressure etc.). The solubility of the analyte in the eluent may be inhomogeneous over the 

length of the column, which in turn, will affect the signal response. 

3.2.4 Complementary Separations 

As mentioned previously, complementary selectivity is a very useful feature of the 

Chirobiotic series of columns. Figure 13 shows the principle of complementary separations 

using the Chirobiotic V and Chirobiotic T columns for the separation of warfarin and N-

CBZ-Norvaline. It can be seen that a partial separation was significantly improved when 

switching from one to another related column in this family using the same mobile phase 

conditions. This phenomenon also exists between all other Chirobiotic columns. 
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3.3 Method Development with Individual Chirobiotic Columns 

3.3.1 Vancomycin CSP (Chirobiotic V) 

Vancomycin shows considerable enantioselectivity for neutral molecules, amides, acids, 

esters and cyclic amines etc. A wide variety of secondary and tertiary amines have been 

separated on the Chirobiotic V column in the polar organic (PO) mode. As discussed 

before, if a molecule meets the structural criteria in Note 1, the PO mode is the mobile 

phase of choice, followed by the normal phase (NP) mode and the revered phase (RP) 

mode, depending on solubility issues (see Note 2), etc. The following table and protocol 

flow chart provide a generic approach to a chiral separation using a Chirobiotic V 

column. Optimization is necessary following the starting mobile phase based on the 

criteria outlined in the previous sections. 

Table 3. Starting Mobile Phase Compositions for Chirobiotic V(71) 

Mode Mobile phase composition Solvent/additive ratios Types of chiral analytes 

PO MeOH/HOAOTEA 100/0.1/0.1 Amino alcohols and (cyclic) 

amines. 

RP THF/20mM NH4NO3, pH 5.5 10/90 Amines, imides, acids, profens. 

NP Hex/EtOH 80/20 Hydantoins, barbiturates, imides, 

and oxazolidinones. 

Figure 14 shows the Method Development Protocol- Chirobiotic V 

3.3.2 Teicoplanin CSP (Chirobiotic T) 

The Chirobiotic T column seems to be particularly adept at resolving the following 

general classes of compounds: native amino acids (most ordinary alpha and beta amino 

acids are separated on Chirobiotic T)(7,9), N-blocked amino acids (including FMOC, 

CBZ, f-Boc etc), o-hydroxycaiboxylic acids, acidic compounds (including carboxylic 

acids, phenols, etc.), small peptides(9), cyclic amides, sulfbxides(43), neural aromatic 

analytes(129), and other neutral cyclic amines containing aromatic moieties. Separations 
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normally obtained on a chiral crown ether or ligand exchange type CSP are also possible 

on the Chirobiotic T column. In general, there is no better chiral stationary phase for the 

separation of native amino acid enantiomers than that based on teicoplanin(61,114). In 

addition, beta-blockers (amino alcohols) have been resolved. It also shows the 

"complementary stereoselectivity" to Chirobiotic V, Chirobiotic R, and Chirobiotic TAG 

columns. 

In methods development, the polar organic mode is the first utilized mode if the analyte 

meets the structural criteria (see Note 1). In the RP phase mode, the Chirobiotic T 

appears to achieve the best separations when an alcohol type mobile phase modifier is 

used (see Note 3). The order of priority for organic modifiers is MeOH > EtOH > THF > 

IP A. The exceptions are amino acids where EtOH modifier produced higher selectivities. 

The pH can be adjusted to optimize the RP mode separation. Lower pHs, to 3.8, produces 

a significant increase in retention for analytes with free carboxyl groups. In all cases, both 

selectivity and resolution varies with pH. Nonionizable analytes typically show less 

variation or a decrease in retention with the decrease in pH. The pH resulting in optimum 

selectivity (a) for nonionizable analytes, i.e. pH 7, rarely corresponds to the pH of 

optimum resolution, i.e. pH 4. Chirobiotic T is very sensitive to acidic conditions, 

therefore, the safest and most stable pH range is 3.8 to 7.0(71). 

Chirobiotic T can be used in any NP mode, however, the preference of polar organic 

modifier for Chirobiotic T is EtOH. There are a few cases where IP A works better. The 

following Table 4. gives a summary of starting mobile phases for the Chirobiotic T 

column in all three mobile phase modes. 

Table 4. Recommended Starting Mobile Phase Compositions for Chirobiotic T. 

Mode Mobile phase 

composition 

Solvent/additive 

ratios 

Types of chiral analytes 

PO MeOH/HOAC/TEA 100/0.1/0.1 Amino alcohols and N-

blocked amino acids 
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RP MeOH/O.1% TEAA, pH 4.1 20/80 ce-hydroxy acids, 

oxazolidinones, 

RP for amino 

acids 

EtOH/HzO 50/50 underivatized and N-blocked 

amino acids and peptides 

NP Hex/EtOH 80/20 Hydantoins and imides 

Figure 15 shows the Method Development Protocol-Chirobiotic T 

3.3.3 Teicoplanin Aglycon CSP (Chirobiotic TAG) 

The Chirobiotic TAG is a variation of the Chirobiotic T and has shown excellent 

complementary selectivity to the Chirobiotic T. Much better resolution was observed for 

separation of amphoteric molecules, including many alpha, beta, gamma and cyclic 

amino acids, including carnitine, as well as other kind acids(23). It also showed 

remarkable selectivity for neutral molecules such as oxazolidinones, hydantoins, 

diazepines, coumarine derivatives and chiral sulfur containing compounds(7,36,43,129). 

The mobile phase selection criteria are similar to that for Chirobiotic T. All of the points 

made under the Chirobiotic T are applicable to Chirobiotic TAG. The flow chart for 

method development protocol-Chirobiotic TAG is shown in Figure 16. We can see in 

Figure 16 that the single solvent (i.e., methanol, ethanol and acetonitrile) was used for 

Chirobiotic TAG as the mobile phase and it showed excellent resolution on some neutral 

molecules. 

3.3.4 Ristocetin A (Chirobiotic R) 

Chirobiotic R also is complementary to Chirobiotic V and Chirobiotic T with high 

selectivity for anionic chiral molecules and many amino acids(17). The mobile phase 

selection and separation optimization criteria are also similar to those for Chirobiotic T. It 

also appears to favor alcohol type mobile phase by a large margin. The following tables 

and flow chart will be very useful to start a separation using Chirobiotic R as a CSP. 

Table 5. Recommended starting mobile phases for Chirobiotic R 
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Mode Mobile phase 
composition 

Solvent/additive 
ratios 

Types of chiral analytes 

PO MeOH/HOAC/TEA 100/0.1/0.1 Alpha-hydroxy acids, profens, N-blocked 
amino acids 

RP MeOH/Q.l%TEAA, 
pH 6.8 

20/80 Alpha-hydroxyl/halogenated acids, 
substituted aliphatic acids, profens, N-

blocked amino acids, hydantoins, peptides 

RP EtOH/HzO 50/50 Amino acids 

NP Hex/EtOH 40/60 Imides, hydantoins, N-blocked amino acids 

Fig 17 shows the Method Development Protocol-Chirobiotic R 

3.4 Column Coupling for Rapid Screening Chiral Selectivity 

"Column coupling" is a very useful application of the "complementary feature" of 

Chirobiotic columns. Since each of the Chirobiotic columns (i.e. Chirobiotic V, T, and R) 

has its unique selectivity in all three mobile phase modes towards different chiral 

racemates, it should be a very efficient way to put them together and make a combined 

column to do a fast screening for selectivity. This "coupling column" was made by 

ASTEC by combining three 10 cm Chirobiotic columns in the direction of increasing 

polarity regardless of the mobile phase type, i.e., Chirobiotic R-> V-» T. This technique is 

very useful. It allows for the evaluation of this entire class of chiral selectors with a single 

coupled column for the ability to separate a molecule. Even if a partial separation or a 

shoulder is obtained on the coupled column, a baseline separation is guaranteed with one 

of the columns in this class. 

However, the enantiomeric elution order for an analyte on different columns may 

reverse(9,14,36,43), which may cause cancellation of the overall separation. Therefore, 

consideration of the elution order on different CHTTOBIOTIC columns before screening 

is necessary. But it is very unlikely that the separation will be completely diminished by 

elution order reversal on different columns. Eventually some resolution should be able to 

be observed even like a partial split, or a shoulder peak. It has been observed that if a 

partial resolution of 0.6 or greater is obtained in the column coupling screening, a 

resolution of >1.5 baseline separation can be optimized on a 25 cm column for the 
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selected stationary phases(62). This fast screening method is very straightforward and 

requires minimum amount of time in searching for an optimum CSP. 

Practically, in order to determine whether a chiral separation is achievable on 

Glycopeptide antibiotics CSP, three runs using this coupling column in the following 

order will be able to tell. 

1. R + V + T in the new polar organic mode: MeOH/HOAC/TEA=l 00/0.02/0.01 

2. R + V + T in reversed phase mode: MeOH/TEAA (0.1%, pH 6.0)= 25/75 

3. V + T in normal phase mode: EtQH/Hexane=60/40 

Once a partial or complete separation is done on the coupling column, the following 

optimization steps in specific mobile phase modes should be followed to get a better 

resolution on a single CSP(71). 

Table 6. Recommended optimization steps following the coupling column screening 

Optimize in PO Mode Optimize in RP Mode Optimize in NP Mode 
1. choose a single 1. Choose a single analytical 1. Choose a single 

analytical column column (25 cm R, T, or analytical column (25 
(25cmR,T,orV) V) cm R, T, or V) 

2. choose proper 2. Choose proper organic 2. Choose proper polar 
acid/base (HOAC, modifier (THF for V, solvent (EtOH, IP A) 
TEA, TFA, MeOH for R and T) 3. Change the 
NH40H or salts 3. Change the concentration concentration of polar 
etc.) of organic modifier. solvent. Higher 

3. adjust acid/base Higher concentration concentration results 
ratio (4/1 to 1/4) or results lower retention. lower retention. 
salt concentration 4. Choose proper buffer 4. Add small amounts of 
0.01% to 1%. (TEAA, NH40AC, acid + base as 
Higher NH4N03, Na citrate) modifiers. 
concentration of 5. Change the concentration 5. Change temperature 
salts results in of aqueous buffer range: (T); selectivity and 
lower retention 0.05% to 1% elution order may 

4. change flow rate, 6. Change pH of aqueous change with T. Lower 
lower flow rate buffer. T, increase Rs, higher 
often results in 7. Change flow rate. T may lead to co-
higher resolution. 8. Decrease temperature elution and finally 

5. decrease reversal of elution 
temperature can order. Maximum 
increase resolution operation temperature 

is 65°C. 
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3.5 Applications using Glycopeptide Antibiotic CSPs 

The use of Glycopeptide Antibiotic CSPs has resulted in the successful separation of 

most types of neutral, acidic, and basic compounds. Table 7 summarizes the separations 

achieved on the Chirobiotic V, T, R, and TAG columns. They are classified as amino 

acids and peptides, N-blocked amino acid, alcohols, acids, sulfoxides, neutral molecules 

etc. The name of the compound separated, the column type, mobile phase conditions, 

separation parameters, and reference are all listed in Table 7. This is not intended to be a 

complete database for these columns, but rather an attempt to give example of the variety 

of compounds that have been separated using Chirobiotic columns. This may provide a 

useful starting point, as well as provide pertinent references for scientists interested in LC 

enantiomeric separation. 

Some general trends concerning types of chiral compounds separated on these columns 

can be noted from the information listed in Table 7. 

1) First of all, almost all amino acids and N-blocked amino acids are easily separated on 

these columns. The Chirobiotic TAG provided the best selectivity for native amino acids, 

followed by the Chirobiotic T column (which usually produces higher efficiency 

separations). N-blocked amino acids usually are best separated by the Chirobiotic T and 

Chirobiotic V columns. Chirobiotic V column works best for esters compared to other 

Chirobiotic columns. 

2) Neutral aromatic molecules are best separated in the normal phase mode, and sometimes 

in the polar organic mode (if they have at least two polar functional groups). The 

separation efficiency in these modes is usually good. Reversed phase separations are also 

possible. 

3) Acidic or anionic molecules, including many non-steroidal anti-inflammatory compounds, 

are best separated in the polar organic mode or reversed phase mode. The Chirobiotic V 

column separates the most amine-containing compounds (particularly, 2°, 3° and cyclic 

amines) as does the Chirobiotic T column. None of the Chirobiotic columns separate 
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primary amine compounds well unless they also have other polar functional groups (e.g. 

amino acids, amino alcohols, etc.). 

4) When compounds are separated by both the Chirobiotic T and TAG columns, usually the 

TAG column has greater selectivity, and the T-column shows greater efficiency. 

Given the wide applicability of these columns, it is clear that use will expand in the 

future. 

4. Notes 

1. Chiral analytes suitable for the new polar organic mobile phase mode should have at least 

two polar functional groups. These functional groups include alcohols, halogens (F, CI, Br, 

I), nitrogen in any form (primary, secondary, and tertiary amines), carbonyl, caiboxyl, 

oxidized forms of sulfur and phosphorus, for example. At least one of the analyte's polar 

functional groups must be on or near the stereogenic center. The other polar group can be 

located anywhere in the molecule. It is also beneficial if the analyte has some steric bulk or 

aromatic rings close to the stereogenic center. 

2. To choose the best mobile phase mode for a separation, the solubility of the sample in the 

mobile phase is a key issue, particularly for preparative scale separations. If the analyte is 

soluble only in organic solvents, either the normal phase or polar organic mode can be used 

(depending on the number and locations of functional groups on the chiral molecule, see 

Note 1). When the solute is water soluble only, the reverse-phase mode is required. There are 

some solutes that can be separated in both reversed-phase and polar organic modes. This 

gives the analyst a choice of conditions. Likewise some other analytes can be separated in 

both polar-organic and normal phase modes. Usually one mode is superior to the other in 

terms of separation speed, resolution, sample loadability, and compatibility to prior sample 

work-up procedures. 

3. In the reversed phase mode, different macrocyclic glycopeptide CSPs prefer different type 

of organic modifiers. For example, THF and ACN work best on Chirobiotic V and VAG, 
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while Chirobiotic T, TAG and R produce better selectivity and efficiencies with alcohol-type 

modifiers. The elutropic strength for ACN and THF is about twice that of alcohols on 

Chirobiotic columns. 

4. Recommended buffers in the reversed phase mode in the order of their usefulness are as 

follows: triethylammonium acetate (TEAA), ammonium acetate, ammonium nitrate, and 

sodium citrate. The percentage of the buffer salts can be varied from 0.01% to 1% depending 

on the retention factor of specific analytes. Normally, the higher the buffer concentration, the 

shorter is the observed retention. Buffer solutions with 0.1% TEAA are most frequently used. 

They are prepared by titrating a 0.1% solution of triethylamine with glacial acetic acid, to the 

appropriate pH. 

5. The absolute amount of added acid and base in the polar organic mode is essential for 

optimization of the retention time. If the analyte elutes too fast, the concentration of the 

acid/base pair is reduced, or acetonitrile can be added to the mobile phase. On the other hand, 

if the analyte is strongly retained, the acid/base concentration is increased. The range of 

concentrations for the acid/base pair are between 1% and 0.001%. If an acid/base 

concentration >1% is needed, this indicates that the analyte is too polar and that a reverse-

phase separation may be preferred. Concentration below 0.001% indicates a normal-phase 

system may be preferred. 

The ratio of acid to base controls the degree to which the ionizable solutes are protonated or 

deprotonated(l 19). It is a key factor that affects the selectivity. By adjusting the ratio of acid 

to base and the overall percentage of both acid and base, retention and resolution both can be 

affected. The typical starting ratio is 1:1 (mole/mole), and then a 1:2 or 2:1 ratio are used to 

End the most improved resolution. The ratio of acid to base can be as high as 5:1. Acids and 

bases that can be used with Chirobiotic columns include triethylamine, ammonia, acetic acid, 

TFA, etc. TFA is usually used in 50% of the amount of acetic acid due to its greater acidity. 

Ammonium acetate, ammonium trifluoroacetate and ammonium formate are very popular 

mobile phase additives in both HPLC and LC-MS. 
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Table 7 Chiral Separations Achieved on Chirobiotic Columns (cont'd on next page) 

Chiral Compound Chirobiotic 
Column 

Mobile 
Phase 

Reference Note 

Amino acids, derivatives and peptides 
Native amino acid (Including 20 naturally 
occurring and amino acids not found in proteins) 

T, TAG, R RP (9,17,23,29,3 
5,74,78,88,13 
0,131) 

More than 70 
compounds 

Dopa (DL-3-(3,4-Dihydroxyphenyl) alanine) T.TAO.R RP (9,17,23,29) Antiparkisonian 
Folinic acid (5 -fbrmyl-5,6,7,8-tetrahydrofblate) T,TAG RP (23,29) Antianemic 
Carnitine and Acetyl carnitine T,TAG RP, PO (23^9,35) fat fighter 

N-blocked amino acids 
Dansyl (5-dimethylamino-l-naphtbalenesulfbnyl) 
amino acids 

T,R,V RPfO.NP (2,7,17,19^2, 
36,82,132) 

N-2,4-Dmitrophenyl-amino acids R,T RPfO,NP (7,17) 
N-2,4-D nitrophenyl-o-amino-carboxylic acid R,T RPfO (7,17) 
N-3,5-D nitro-2-pyridyl-aminoacids T^ PO^IP,RP (7,17,19^2) 
N-3,5-D nitrobenzoyl-amino acids V,T,R RPJPO,NP (2,7,17,19^2) 
N-Acetyl-amino acids R,T RPJPO (7,17,29^5,1 

33) 
N-Acetyl-n-fluro-phenylalanine R,T RPJPO (7,17,29) 
N-fluoro-amino acids R RP (17) 
N-methyl-amino acids R RP (17) 
N-Benzoyl-amino acids V,T,R RPJPO,NP (2,7,17,19^2) 
N-blocked tryptophan analogues R RP (125) 7 compounds 
N-Carbamyl-amino acids R,T,V RPfO (2,7,17) 
N-CBZ (carbobenzyloxy) amino acids V,T,R RPJPO,NP (2,7,17,19,22) 
N-FMOC (9-Fluorenylmethyl chlorofbrmate) 
Amino acids 

T,R RP,NP (17,19) 

N-Formyl-amino acids R,T RPfO (7,17) 
N-Phdialoyl-amino acids R PO,NP (17) 
N-Phthaloyl-glycyl-amino acids R,T RPJPO,NP (7,17) 
N-t-BOC (tert-Butoxycarbonyl) Amino acids T,V,R RP (2,7,17,74,11 

8) 

Other amino acids 
Synthetic amino acid analogues containing 
1,2,3,4-tetrahydroisoquinoline, tetraline or 
lJ2^,4-tetrahydro-2-carboline skeletons 

R RP, PO (31) 28 compounds 

Unusual amino acid analogs (Tyrosine, 
phenylalanine, tetrahydroi soquinoline, 
aminotetralin, tryptophan analogs etc) 

R PO,RP (134) 25 compounds 

Unusual ring- and ownethyl-substituted 
phenylalanine analogs 

T RP (38) 6 compounds 

Secondary amino acids possessing 1^,4-
tetrahydroisoquinoline and related analogues 

T RP (26) 9 compounds 

Unusual secondary aromatic amino acids T RP (18) 
Unusual ^-methyl-substituted amino acids T RP (25) 4 compounds 
g-amino acids T RP (135) 13 compounds 
Unusual cyclic g-substituted «-amino acids T RP (80,92,126) 5 compounds 
Unusual amino acids (phenylalanine, tyrosine 
analogues and analogues containing 1,2,3,4-
tetrahydroisoquinoline, tetraline, 1,2,3,4-
tetrahydro-2-carboline, cyclopentane, 
cyclohexane, bicycle[2.2.1 ]heptane or heptene 
skeletons) 

T RP (14) 31 compounds 
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Table 7. continued 
^-substituted -^-alanines T,R RP, PO (33) 8 compounds 
^substituted -tryptophan analogues T RP (27) 5 compounds 
)3-methyl-amino acids (tyrosine, phenylalanine, 
tryptophan, and l,2,3,4-tetrahydroiso(piinoline-3-
carboxylic acid) 

T RP (14,20) 4 compounds 

2-pyrrolidone-5-carboxylic acid T,TAG RP (23,29) 
3-(n-naphthyl) alanine V,R NP,RP (2,17) 
4-bromo-phenylalanine R RP (17) 
4-chloro- phenylalanine R RP (17) 
5 or 7-benzyloxy-tryptophan R RPfO (17) 
Baclofen T RP (7) 
Carnitine and O-acylcamitine derivatives T RP (40) 13 compounds 
Carnitine and O-acylcamitine derivatives T RP (136) 13 compounds 

Penicillamine R RP (17) 
selenomethionine T RP (89) HPLC-ICP-MS 
Dopa and 3-O-methyl-dopa T RP (49) Antiparkisonian 
Tteanine R RP (17) 

Both N and Carboxy-Protected amino acids 
(PAAs) 
Fmoc-Ser-OH, Fmoc-Asp-OH, Fmoc-Arg-(Pmc)-
OH, Fmoc-Asp-(OtBu)-OH, Fmoc-Glu-(OtBu)-
OH, etc. 

T RP (46) 21 compounds 

Di- and trlpepddes R,T RP (7,9,17) 60 compounds 

Amino alcohols, (/3-blockers, ̂ 3-adrenoreceptor 
blocking drugs) 
(R)- and (S)-atenolol (elution order determined) T PO (45) anticardiovascular 
Alprenolol T,V,R PO (2,137,138) antihypertensive 
Arotinolol T, V PO antihypertensive 
Atenolol T, V, TAG PO (23,29) antiarhytmic 
Labcltalol V PO (28) achieved in CEC 
Metoprolol T,R PO (7,17) antihypertensive 
Oxprenolol T, V PO (2,7) antihypertensive 
Pindolol T, TAG, V PO (23,29,71,87) antihypertensive 
Practolol T PO (139) antihypertensive 
propranolol T, V,R PO (2,137) antihypertensive 
Propranolol, metoprolol V,T PO (71,87) antihypertensive 
Sotalol V PO (28) achieved in CEC 

Calcium Channel Blockers (modulators) antihypertensive 
4-aryldihydnopyrimidine derivatives (DHPMs) V,T RP (47) 27 compounds 
Nicardipine V,T PO (87) 

Other cardiovascular drugs 
albuterol ( a.k.a. salbutamol) V,T PO (71,72) 02 adrenoreceptor 

agonist 
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Table 7. continued 
Alkylamino derivatives of aryloxypropanols V,T PO (34) 62 compounds 

anti-cardiovascular 
disorder 

Clenbuterol T PO (139) % adrenoreceptor 
denopamine Cardiotonic 
flosequinan vasodilator 
formoterol % adrenoreceptor 

agonist 
pinacidil antihypertensive 
simendan intotropic drug 
Terfenadine T RP, PO antihistaminic 
Valsaitan, angiotensin n 
Verapamil T RP, PO (29) antianginal 
Warfarin T, TAG^ 

V 
RP (2,7,17,23, 

29) 
anticoagulant 

Non-steroidal anti-inflammatory 
Benoxapro&n V RP (71) 
Carprofen T RP (7) 
Fenoprofen V RP (71) 
Fenoprofen Methyl Ester V RP (71) 
Flurbiprofen T,V RP (7,19,71) 
Ibuprofen T,V^ RP (7.19,22) 
Indoprofen T,R,V RP (2,7,17,19) 
ketoprofen T, V,R RP (7,17,19,22 

,71) 
Sur&ofen T RP (7,19) 

Chiral acids 
1,1 -binaphthyl-2,2'-diyl hydrogen phosphate V RP (2) 
2-(2,4-dichlorophenoxy)propionic acid T RP (7,140) 
2-(2-chlorophenoxy)propionic acid T RP,NP (7) 
2-(3-chlorophoioxy)propionic acid T RP (7) 
2-(4-chloro-2-methytphenoxy)propionic acid T RP (140) 
2-(4-chlorophenoxy)pmpionic acid T NP.RP (7,19) 
2-(4-Hydroxyphenoxy)propionic acid T RP (7) 
2-(4-Mtrophenyi)pmpionic acid T RP (7) 
2-lmidazolidone-4-carboxylic acid T PO (7,19) 
2-Phenoxypropionic acid T RP (7) 
2-Phenylpropionic acid T,R RPfO (19) 
2-Phenylpropionic acid T RP (7) 
3-(4-Hydroxyphenyl) lactic acid T RP (7) 
3-(Benzyloxycarbonyl)-4-oxazolidine carboxylic 
acid 

T RP (21) 

3-ammo-3-phenylpropionic acid R PO (19) 
3 -Hydroxy-4-methoxymandelic acid T,R RPfO (7,17) 
3-lndolelacedtic acid T,R RPf 0 (7,17) 
4-Hydroxy mandelic acid T, TAG,R RP, PO (7,17,22,23 

,29,35) 
urinary antiseptic 

6-Methoxy-1 ̂ ,3,4-tetrahydro-9A-pyrido[3,4-
F|indole-l-caiboxylic acid 

R RP (19) 
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Table 7. continued 
Alkoxy-Substituted Esters of Phenylcarbamic 
Acid 

V,T PO (32,42) 30 compounds 
Local 

anaesthetics 
Aryloxyphenoxypropanoic acid T RP (48) Antitumor agent 
Atrolactic acid R,T PO,RP (7,22) 
Benzocyclobutenecarboxylic acid T RP (7) 
Cis-2-amino cyclohexane carboxylic acid T,TAG RP, PO (23,29) 
lopanic acid T RP (7) 
Mandelic acid T^t RPfO (7,17,21,22 

,35) 
Nepmxen R RP (19) 
^-Chloromandelic acid T RP (7) 
Ritalinic acid (RA) V,T PO (87) 
(raMf-4-Cartinine-carboxylic acid T RP (7) 
Tropic acid T RP, PO (7,29) 
o-amino-2-thiopheneacetic acid R RP (19) 
o-Methoxyphenyl acetic acid T RP (7) 
jS-Phenyllactic acid R,T PO.RP (7,22) 
Mecoprop, mecoprop-methyl T,TAG RPfO (23,29) herbicide 

Chiral Amines 
N-Benzyl-œmethyl-benzylamine V PO (21) 
N-Benzyl-1 -( 1 -naphthyl)-ethylamine 
hydrochloride 

V PO (21) 

Phenyl propanolamine (Norephedrine) T RP, PO (29) 
Idazoxan V RP (2) 
c«-( 1 -aminoethyl)-hydroxybenzyl alcohol V RP (2) 
Bupivacaine V,T RP (2,7) 
N-(3,5-dinitrobenzoyl)-a-methylbenzy lamine V RP (2) 
g-Hydroxyphenethylamine R RP,NP (17,19) 
Penicillamine R RP (19) 
No-Benzoylarginine-|&-naphthylamine T PO (7) 

Plant growth regulators and related indole 
compounds 
3 -{3 -indolyiybutyric acid, abscisic acid and 
structural related conqwunds including a variety 
of substituted tryptophan etc. 

T,R RP (52) 18 compounds 

OrganometaDic complexes 
Tris-diimine ruthenium(II) complexes T,TAG RP (141) 9 compounds 
Ferrocenylalkyl polyfluoroalkyl benzimidazoles V,T RP, NP (41) 3 compounds 

Other heterocyclic compounds 
Polyfluoroalkyl benzimidazoles V,T RP,NP (41) 
4-Benzyl-2-oxazolidinone T, V RPJiP (16,19,75) 
4-, or 5- substituted racemic pyridones 
(Substituted 2-methoxy-6-oxo-1,4,5,6-
tetrahydropyridine-3 -carbonitriles) 

V,T RP (68) 9 compounds 

(//-fAreo-Methylphenidate V RP (86) antihyperactive 
Oxazepam V,T PO (87) 
Temazepam V RP (2) 
cyclic imidic compds (barbiturates, 
piperidine-2,6-diones, and mephenytoin) 
including mephobarbital and thalidomide, 
hexobarbital etc) 

V RP, NP (142) 11 compounds 
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Table 7. continued 
Citalopram and its 2 N-demetbylated metabolites 
demethylcitalopram and didemethylcitalopram 

V RP (138) 

RS - 4- phenyl - 2- oxazolidinone V,R,T RP,NP, PO (36) 
RS- 4- benzyl- 2- oxazolidinone V,R,T RP,NP,PO (2,7,19,36) 
RS- 4- benzyl- 3-pmpionyl- oxazolidinone V,R,T RP,NP, PO (36) 
RS- 5,5,dimethyl-4-phenyl-2-oxazolidionone V,R,T RP,NP, PO (36) 
RS-3-benzyloxy carbonyl-4-oxazolidine 
carboxylic acid 

V,R,T RP,NP, PO (36) 

4S,5R(+) - cis- 4^- diphenyl-2-oxazolidinone V,R,T RP.NP, PO (36) 
Coumachlor T, TAG, V RPfO (2,7,19,23, 

35) 
rodenticide 

Coumafuryl V,T RP, NPfO (2,7) 
5-Methyl-5-phenyl hydantoin T, TAG, 

V,R 
RPJPO,NP (2,7,17,19, 

22,23,29,3 
5) 

anticonvulsant 

Styrene oxide T,TAG RPfO (23) 
Thioridazine TTAG RP,PO (23) antipsychotic 
T etrakis[ 1 -[(4-tert-but^-phenyl)sulfbnyl] -pyrro-
lidine-carboxylatel diihodium(II) 

V PO (21) synthesis 
intermediate 

2-methyl-4-phcnyl indanone T RP (35) 
phenylphthalide T RP (35) 
"y-(2-naphthyl)-butyrolactone T RP (35) 
"/-Phenyl- "y-butyrolactone T NP (7) 
Althiazide T,V RP,NP (2,29) diuretic 
3-methyl-5-cano-6-methoxy-3,4-dihydro-2-
pyridone 

V RP (2) 

Thioridazine V RP (2) 
5-(4-hydroxyphenyl)-5-phenylhydandoin VAT RP,NP (2,7,17,22) 
5-(3-hydroxyphenyl)-5-phenyIhydandoin R NP (17) 
3 -benzoylphthalide V RP (2) 
3 -phen)dphthalide T RP (7) 
2^^-trifluoro-l -(9-anthryl)ethanol V RP (2) 
Mephobarbital V NP (2) 
Hexobarbital V RP (2) 
3a,4,5,6-tetrahydrosuccinimide[3,4-
b] acaiaphthen-10-one 

V,T,R RP^fP (2,7,17,19, 
22) 

1 -benzoyl-2-tert-butyl-3 -methyl-4-
imideazolidinone 

V,T RP,NP (2,7) 

3-[2-(2-bromoacetamido)acetamido] PROXYL V RP (2) 
Ethyl-2-pyrmlidone-5 -carboxylate V RP,NP (2,19) 
CK-carbethoxy-Y-phenyl-Y-butyrolactone V RP,NP (2,19) 
CGA-40919 V RP (2) 
Ftorafur V RP,NP (2,19) 
5-(4-methylphenyl)-5-phenylhydantoin V,T RP,NP (2,7,19) 
l,r-bi-2-naphthol V RP (2) 
'y-phenyl-'y-butyrolactone V,R RPfO (2,17) 
Ethyl-2-pyrrolidone-5-carboxylate V RP (2) 
Chlorthalidone R NP (22) 
5-Phenyl-2-(2-propynylamino)2-oxazolin-4-one R,T NP (7,22) 
Althiazide TJR RP,NP (7,17) 
4-Benzyl-2-melhoxy-6-oxo-1,4,5,6-
tetrahydrophyndine-3-carbonitrile 

T RP (7) 

4-Phenyl-2-methoxy-6-oxo-1,4,5,6-
tetrahydrophyndine-3 -carbonitrile 

T NP (7) 

4-Cyclohexyl-2-methoxy-6-oxo-1,4,5,6-
tetrahydrophyridine-3-carbonitrile 

T RP,NP (7) 
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Table 7. continued 
4-Methyl-2-methoxy-6-oxo-1,4,5,6-
tetrahydrophyridine-3 -carbonitrile 

T NP (7) 

Devrinol T RP (7) 
Tetrahydropapaveroline hydrochloride T PO (7) 
Mephentoin T NP (7) 
TAPA R NP (17)  
Tetrantoin R NP.PO (17) 
Chlorthalidone R NP (17) 
1 -Benzocyclobutenecarbonitrile R NP (17)  
1 -Acetoxy-8-hydroxy-1,4,4a,9a-tetra-
hydroanthraquinone 

R NP (17)  

Fluoxetine, Terbutaline V,T PO (87) 
Bromacil T, TAG, V RP, PO (2,7,19,23,29) herbicide 
Mephenytoin V,T RP,NP (2,19) 
devrinol V RP (2) 
norverapamil V RP (2) 
Verapamil V RP (2,19) 

Semisynthetic ergot alkaloids 
Nicergoline («-adrenergic blocking agent), 
lisuride (serotonin antagonist), 
terguride (mixed D% agonist/antagonist of the 
pituitary) meluol. 

V,T RP (76) 

Other neutral compounds 
Aminoglutethimide V,R RP,NP (2,17) 
Bendroflumethiazide V,T RP (2,7) 
Benzoin methyl ester V RP (2) 
Captopril diastereoisomers T RP (44) antihypertensive 
Furo-Coumarine derivatives T^V.TAG 

,VAG 
RPfOJ^P (129) 27 compounds 

Indapamide V RP,NP (2) 
Mandelamide V,T RP,NP (2,7) 
Methsuximide V,T RP (2,7) 
N-( 1 -Phenylethyl)maleimide V RP (21) 
N-(o-Methylbenzyl)phthlic acid monoamide T RP (7) 
N,N'-bis(a-methylbenzyl)su1famide V RP (2) 
N^N'-Bis(a-metylbenzyl) sulfamide T NP (7) 
N-benzoylalanine methyl ester V RP (2) 
Phensuximide V,R,T RP,NP (2,7,17,22) 
proglumide V,T RP (2,7,19) 
Promethazine V,R RP, PO (50) Antidepressive 

and antiallergic 
PyridogluteAimide V RP (2) 
Salbutamol and its 4-O-Sulphate Metabolites T PO (85) 
Sulfoxides, sulfnate esters and tosylated 
sulSlimines 

T,R,V,TAG 
,VAG 

RPfO,NP (43) 42 compounds 

Tropicamide T RP (7) 
a,a-Dimethyl-^-methyl succinimide T NP (7) 
o-methyl-o-phenyl succinimide T, 

TAG,V^ 
RP, PO,NP (2,7,17,22,23, 

29) 
antiumlithic 

CK-methyl-o-propyl succinimide R,T NP (7,17,22) 
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FIGURE CAPTIONS 

Figure 1. Structures of the macrocyclic antibiotics vancomycin, teicoplanin, ristocetin A, 

and teicoplanin aglycon showing a profile view of the aglycon "basket" using (A) space­

filling molecular models produced through energy minimization and (B) stick figures. 

The colored atoms in part A denote the hydrophilic moieties, while the black portion 

designates the more hydrophobic regions. Red represents carboxylate groups, green are 

ammonium groups, and blue are hydroxyls. Black regions include the aromatic rings, 

connecting carbons, and amido linkages, (revised from (10)). 

Figure 2. Plot showing the effect of solution pH on the electrophoretic mobility of 

ristocetin A (m), vancomycin (A), and teicoplanin (#) macrocyclic antibiotics using 0.1 

M phosphate buffer. The capillary for ristocetin A and vancomycin studies was 32.5 cm % 

50 f*m i.d. (25 cm to the detector window). The voltage was +5 kV. The electrophoretic 

mobility of teicoplanin was obtained using a 44 cm % 50 /wn i.d. capillary (36.5 cm to the 

detector) and a run voltage of +10 kV. Either acetone or methanol was used as the 

electroosmotic flow marker (revised from (10)). 

Figure 3. Simplified schematic shows two important morphological characteristics of the 

aglycon part of glycopeptide antibiotics. (A) End-to-end distance (represented by the 

length of the arrow) decreases from left to right. (B) The "C-shaped" aglycon also can be 

twisted to different degrees. The helical twist increases from left to right in this series of 

three figures (revised from (10)). 
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Figure 4. Reversed-phase separation of N-CBZ methionine and ketoprofen using high (1 

g ristocetin A per 3.00 g silica gel), medium (0.75 g ristocetin A per 3.00 g silica gel), 

and low coverage (0.5 g ristocetin A per 3.00 g silica gel) of the ristocetin A chiral 

selector. MP: MeOH/0.1 %TEAA buffer, pH 7.0 (20/80, v/v). Detection: UV 254 nm. 

Flow rate: 1.0 ml/min room temperature(revised from (22)). 

Figure 5. The pH effect on retention factor (k') for various dansyl amino acids (A: 

dansyl leucine; m: dansyl valine; *: dansyl serine) at T=20°C using Chirobiotic T as CSP, 

mobile phase: 0.01 M citrate buffer-Methanol (90/10, v/v) (revised from (82)) 

Figure 6. The pH effect on selectivity factor (a) for dansyl serine enantiomers. All other 

conditions same as Figure 5 (revised from (82)). 

Figure 7. Reversed-phase retention of the first eluted (o) and second eluted (A) 

enantiomers of 5 -methyl-5 -phenylhydantoin as a function of mobile phase composition 

using Chirobiotic V as CSP (revised from (2)). 

Figure 8. Effect of different organic modifier on resolution using Chirobiotic V as CSP. 

(Courtesy of Scott Sharpe, Eh Lilly & Co.) 

Figure 9. Effect of organic modifier (EtOH)/water ratio on resolution, selectivity, and 

retention factor k for the enantiomeric separation of Methionine using Chirobiotic T as 

CSP (revised from (7)). 

Figure 10. Effect of organic modifier (EtOH)ZHexane ratio on the retention of the first (1) 

and second (2) enantiomers of ^-phenyl- y-butyrolactone (solid line, A) and 4-phenyl-2-

methoxy-6-oxo-l,4,5,6-tetrahydropyridine-3-carbonitrile (dotted line, B) using 

teicoplanin as CSP (revised from (7)). 

Figure 11. The separation of enantiomers of Propranolol employing different HO AC/ 

TEAA concentration ratios on Chirobiotic T. Room temperature and at a flow rate of 

2ml/min (revised from (114)). 
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Figure 12. Temperature effect on separation of jS-MePhe enantiomers. Column: 

Chirobiotic T; MP: H^O/MeOH (10/90, v/v), detection 202 nm. Flow rate Iml/min. (A) 

1*C, (B) 20°C (C) 50 °C; peaks: 1) erytho-L isomer, 2) erytho-D isomer; 3) threo-L 

isomer; 4) threo-D isomer (revised from (14)). 

Figure 13. An example of complementary separation using Chirobiotic T vs. Chirobiotic 

V. Separation conditions as shown on the figure (revised from (71)). 

Figure 14. Method Development Protocol for Chirobiotic V 

Figure 15. Method Development Protocol for Chirobiotic T 

Figure 16. Method Development Protocol for Chirobiotic TAG 

Figure 17. Method Development Protocol for Chirobiotic R 
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Method Development Protocol for Chlroblotic V 
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No Separation 

Normal Phase 
80/20: Hex/EtOH 

Increase Acid/Base 
to 1.0/1.0 

Retention/Separation 
Optimize Acid/Base 

Retention/Separation 
Optimize acid/base 

Normal Phase 
80/20: Hex/EtOH 

Analyte with only one 
functional group 

Analytes with more than 
one functional groups 

Reversed Phase 
10/90:THF/20mM 
NHiNO, oH 5.5 

New Polar Organic Phase 
100/0.1/0.1 :CH30H/H0AC/TE 

Reversed Phase 
10/90:THF/20mM 
NH4NO3 pH 5.5 

Retention/Separation 
Optimize Acid/Base 

Figure 14 
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Method Development Protocol for Chlroblotic T 
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Normal Phase 
80/20: Hex/EtOH 

Analyte with only one 
functional group 

Analytes with more than 
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New Polar Organic Phase 
100/0.1/0.1 :CH30H/H0AC/TEA 

Reversed Phase 
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Figure 15 
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Method Development Protocol for Chlroblotic TAG 

Analytes with more than 
one functional groups 

Increase Acid/Base 
to 1.0/1.0 
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MeOH>EtOH>ACN 

Analyte with only one 
functional group 
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to 0.01/0.01 

Normal Phase 
80/20: Hex/EtOH 

No Separation 
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Retention/Separation 
Optimize Acid/Base 

Retention/Separation 
Optimize acid/base 

Normal Phase 
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Figure 16 
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Method Development Protocol for Chlroblotic R 
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CHAPTER 2 

SEPARATION OF CHIRAL SULFOXIDES BY LIQUID CHROMATOGRAPHY 

USING MACROCYCLIC GLYCOPEPTIDE CHIRAL STATIONARY PHASES 

A paper published in Journal of Chromatography A' 

Alain Berthod, Tom Ling Xiao, Ying Liu, William S. Jenks, Daniel W. Armstrong 

ABSTRACT 

A set of 42 chiral compounds containing stereogenic sulfur was prepared. There were 31 

chiral sulfoxide compounds, three tosylated sulfilimines and eight sulfonate esters. The 

separations were done using €ve different macrocyclic glycopeptide chiral stationary phases 

(CSPs), namely ristocetin A, teicoplanin, teicoplanin aglycone (TAG), vancomycin and 

vancomycin aglycone (VAG) and seven eluents, three normal-phase mobile phases, two 

reversed phases and two polar organic mobile phases. Altogether the macrocyclic 

glycopeptide CSPs were able to separate the whole set of the 34 sulfoxide enantiomers and 

tosylated derivatives. Five of the eight sulGnate esters were also separated. The teicoplanin 

and TAG CSPs were the most effective CSPs able to resolve 35 and 33 of the 42 compounds. 

The three other CSPs each were able to resolve more than 27 compounds. The normal-phase 

mode was the most effective followed by the reversed-phase mode with methanol-water 

mobile phases. Few of these compounds could be separated in the polar organic mode with 

100% methanol mobile phases. Acetonitrile was also not a good solvent for the resolution of 

enantiomers of sulfur-containing compounds, neither in the reversed-phase nor in the polar 

organic mode. The structure of the chiral molecules was compared to the enantioselectivity 

factors obtained with the teicoplanin and TAG CSP. It is shown that the polarity, volume and 

shape of the sulfoxide substituents influence the solute enantioselectivity factor. Changing 

^ Reprinted with permission from Journal of Chromatography A, 955 (2002) 53-69. 
Copyright © 2002 Elsevier Science B.V. All rights reserved. 
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the oxidation state of the sulfur atom from sulfoxides to sulfonate esters is detrimental to the 

compound's enantioselectivity. The enantiomeric retention order on the teicoplanin and TAG 

CSPs was very consistent: the (5)-(1)-sulfbxide enantiomer was always the less retained 

enantiomer. In contrast, the (#)-(2)-enantiomer was less retained by the ristocetin A, 

vancomycin and vancomycin aglycon columns, showing the complementarity of these CSPs. 

The macrocyclic glycopeptide CSPs provided broad selectivity and effective separations of 

chiral sulfoxides. 

2.1. Introduction 

Trivalent sulfur compounds such as sulfoxides and sulfonate esters have non-planar 

geometries and, when asymmetrically substituted, can be found as stable enantiomers at 

room temperature [1]. Traditionally, the sulfoxide group has been represented in illustrations 

as S=0, implying the existence of a second bond between the two atoms. A more modem 

understanding is that the S-0 bond is more ylide-like, i.e. the molecule bears no overall 

charge but has a negatively charged oxygen atom bonded to a positively charged sulfur atom 

[2]. The sulfur center is pyramidal, with a lone pair occupying the fourth position of the 

pseudotetrahedral center. The barrier to inversion depends on substituents, but for 

sulfoxides, it is in the neighborhood of 40 kcal/mol[3]. Thus, if the two substituents are 

different, stable stereoisomers exist. 

Figure below is the traditional structure of sulfoxide 

O 

This is the sulfoxide enantiomers with current accepted structures. 

Ri' 

cr 

Rz 

(T 
+ 

'Ri 
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Since the first report on the separation of chiral sulfoxides in 1926 [4], this family of 

compounds has received much attention given the usefulness of these compounds in organic 

synthesis [5-7]. Consequently, an effective separation of the enantiomers of racemic 

sulfoxides is of analytical and preparative interest. In 1959, using column liquid 

chromatography and an oc-lactose home made stationary phage, an Italian research group was 

able to partially resolve a few racemic sulfoxides [8]. Some chiral sulfoxides were used to 

test early T-% association-type LC chiral stationary phases (CSPs) [9]. Subsequently, this 

class of CSPs was used to separate a limited number of compounds containing stereogenic 

sulfur [10-14]. Protein bonded CSPs were also found to be able to separate some chiral 

sulfoxides [15-16]. Polysaccharide based CSPs were also used successfully to resolve a 

dozen sulfoxide enantiomeric pairs [17-21]. This appears to be the most useful class of CSPs 

for the enantioseparation of chiral sulfoxides thus far [22-23]. Cyclodextrin-based CSPs 

were also found to provide effective and efficient resolution of enantiomers of these 

compounds [24]. 

A recent review did not mention the use of the macrocyclic glycopeptide CSPs for the 

LC separation of sulfur containing compounds [25]. The goal of this work is to evaluate the 

capabilities of the macrocyclic glycopeptide-based CSPs for the separation of chiral 

sulfoxides. In order to obtain a thorough evaluation, the largest number of chiral sulfoxide 

molecules ever examined as well as several sulGnate esters and sulGlimines were especially 

synthesized and assayed for compound enantioselectivity. The first part of this work 

describes and discusses the separation results obtained on five different macrocyclic 

glycopeptide CSPs in three different mobile phase modes. These results are also compared 
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with those found in previous reports. The second part of the study will focus on specific 

solute-stationary phase interactions. By relating the solute structures to the separation data, 

the factors involved in the chiral recognition process can sometimes be identified. 

2.2. Experimental Section 

2.7. compow/wZ? 

The 42 chiral sulfur-containing compounds used in this study are listed in Table 1. 

The chiral sulfoxide compounds were sorted by increasing molecular weight from 1 to 31. 

32 to 34 are the tosylated forms of 1, 16 and 22, respectively. 35 to 42 are sulEnate ester 

containing the Ri-SO-O-Rj group. 1, 4 and 5 were obtained from Aldrich (St. Louis, MO). 

All other 39 compounds were prepared and purified according to published methods by the 

group of W.S. Jenks at Iowa State University, Ames, Iowa [26-30]. 

22 Of&ercAefmca/j 

HPLC grade acetonitrile (ACN), methanol (MeOH), ethanol (EtOH), 2-propanol 

(IPA), M-hexane (hex) and methyl-ferf-butyl ether (MTBE) were purchased from Fisher (St 

Louis, MO) and/or EM (Gibbstown, NJ). Water was deionized and filtered on active 

charcoal and a 5 |im filter. Tnethylamine (TEA) and acetic acid (AA) were from Sigma 

Chemicals (St Louis, MO). 

23. C&zro/ a&zfzoMa/}' 

Five different macrocyclic glycopeptide chiral selectors were evaluated. They were 

ristocetin A, CgsHnoNgO*, m.w. 2066, teicoplanin, CggHgyQzNgOaa, m.w. 1878, 

vancomycin, C66H75CI2N9O24, m.w. 1449, and the aglycone forms of the latter two: 

teicoplanin aglycone (TAG), CggEL^CliNTOig, m.w. 1197 and vancomycin aglycone (VAG), 
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CsgHszClzNgOn, m.w. 1142. The complete structural description of these chiral selectors has 

been given in several articles [25, 31-34]. The chiral stationary phases were prepared by 

bonding the chiral selectors to a 5 ;im HPLC spherical porous silica gel through a linking 

chain [34, 35]. The bonding chemistry was done by Astec (Whippany, NJ). The chiral 

stationary phases were slurry-packed in 250 % 4.6 mm columns. These columns are 

marketed by Astec under the trade names: Chirobiotic R, T, V, TAG and VAG for the five 

glycopeptides, respectively. 

24. 

The macrocyclic glycopeptide based CSPs were used in three different 

chromatographic modes: 1) the normal phase mode with a low polar mobile phase, 2) the 

reversed phase mode with hydro-organic mobile phases and 3) the polar organic mode that 

uses 100% polar organic solvent mobile phases. Three different low polarity normal mobile 

phases were used: %-hexane with 10% ethanol, %-hexane with 10% IP A and MTBE with 10% 

ACN (all % are given in v/v). Two compositions for reversed phase separations were used: 

methanol and aqueous buffer of 1% TEA (0.07 M), adjusted to pH 4.1 with acetic acid, and 

the same pH 4.1 aqueous buffer but with ACN as the organic modifier. The methanol 

contents were 10% v/v with the vancomycin and VAG CSPs, 20% with the teicoplanin CSP, 

30% with the ristocetin A CSP and 50% with the VAG CSP. The ACN content was 10% 

with the vancomycin, VAG and teicoplanin CSPs, 20% with the ristocetin A CSP and 30% 

with the TAG CSP. Two mobile phase compositions for polar organic mode were used: 

100% methanol or 100% ACN, plus 0.025% v/v TEA (2 mM) and AA which were added to 

the organic solvents for use with the vancomycin, VAG and TAG CSPs. 0.05% TEA and 

AA (4 mM) and 0.1% TEA and AA (8 mM) were added when using the ristocetin A and 
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teicoplanin CSPs, respectively. The mobile phase compositions for the reversed phase and 

polar organic mode analyses were adapted to the CSPs to increase elution strength and 

reduce analyses duration. They are not necessarily the optimal mobile phase composition 

giving the best enantioselectivity. 

2.3. Results and Discussion 

The 42 compounds listed in Table 1 were run in triplicate on five columns with seven 

different mobile phases. This produced 4410 chromatograms (i.e., 3 runs *1470 analyses). 

The experimental reproducibility was good. The 1470 average values for the 4410 analyses 

gave relative standard deviations lower than 0.08. Exactly 500 analyses showed some 

resolution of enantiomers of the racemic sulfur-containing compounds. Although the mobile 

phase compositions were not optimized for maximal resolution of enantiomers, the 

separation of the enantiomers was excellent with a baseline return between peaks (Rs > 1.5) 

for 154 separations, that is almost one third (exactly 31%) of the chromatograms with an 

observable enantioseparation. It is notable that every partial enantioseparation could be 

improved by optimizing the corresponding mobile phase composition. In this study, only 

seven distinct mobile phase compositions, in the three chromatographic modes, were used in 

order to obtain a general view of the capability of the macrocyclic glycopeptide based CSPs 

for the resolution of enantiomers of chiral sulfur containing compounds. Table 2 lists the 

average value of the retention factor of the first enantiomer, k%, the enantioselectivity factor, 

a = kg/ki, and the resolution factor, Rs, for selected compounds on three CSPs: ristocetin A, 

teicoplanin and TAG. These three CSPs were the most widely applicable of the columns 

tested. 
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3J. pAase pey/brmamce 

Figure 1 shows the number of observable enantioseparations (a > 1.01) obtained (for 

the 42 compounds listed in Table 1) on each CSPs with the seven mobile phases that were 

tested. The black bars indicate the number of baseline separation (Rs > 1.5) obtained with 

the unoptimized mobile phases. Table 3 lists the cumulative number of enantioseparation (a 

> 1) obtained with each stationary phase along with the number of baseline separations (Rs> 

1.5) obtained. 

The two teicoplanin based CSPs are clearly the most effective chiral stationary phases 

being able to resolve 35 and 33 chiral sulfur analytes for the teicoplanin and TAG CSPs, 

respectively. They produced almost twice as many observable separations as the three other 

CSPs. The teicoplanin CSP separated 3 compounds (25, 27 and 34) that the TAG CSP could 

not separate. In contrast, 40 was separated by the TAG and not by the teicoplanin CSP. 53% 

of the compounds enantioresolved by the TAG CSP were baseline separated. Even though 

unoptimized mobile phases were used, this figure is significantly higher than the 

corresponding value for the teicoplanin CSP results (-34% baseline resolutions). This means 

that the enantioselectivity factors obtained with the TAG CSP often were higher that the 

corresponding values obtained with the native teicoplanin column (Table 3). 

The vancomycin and VAG columns were able to separate 31 and 29 compounds, 

respectively. However, the number of chromatograms with observable enantioseparations is 

significantly lower with these two CSPs than with the teicoplanin and TAG CSPs (Table 3). 

Figure 1 shows that most compounds could be resolved with one or two mobile phase 

compositions only. The number of compounds baseline resolved is dramatically lower; 

seven compounds on the VAG column and only four on the vancomycin column (12, 22, 29 
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and 31) (Fig. 1). The vancomycin CSP could partly resolve five compounds (10,19, 27, 40 

and 41) that the VAG CSP could not separate. Conversely, the VAG CSP could partly 

resolve 21 and 35, which vancomycin did not separate. It should be noted, however, that 

vancomycin is the only CSP that could partly separate the enantiomers of the sulfonate esters 

41 and 42 with the apolar MTBE/MeOH 97/3 %v/v mobile phase. The results obtained with 

these two CSPs and the normal-phase MTBE/ACN 90/10% mobile phase were optimized. 

Methanol was substituted for ACN to decrease slightly the solute-CSP hydrogen bonding 

interactions. Shorter retention times and sharper peaks were obtained with a MTBE/MeOH 

97/3 % v/v mobile phase compared to the MTBE/ACN 90/10% v/v mobile phase (Table 3). 

The glycopeptide antibiotics teicoplanin and vancomycin are naturally produced by 

the fermentation of facomycefzcwL? and orzen&z/za, respectively. 

Both molecules have an aglycone "basket" core bearing three or two carbohydrate 

substituents, respectively. To answer whether the carbohydrate moieties are useful for 

compound enantioselectivity of stereogenic sulfur-containing compounds, the aglycone form 

of teicoplanin, TAG, and vancomycin, VAG, were prepared [33]. It was found that a few 

more sulfur containing compounds could be resolved on the carbohydrate containing 

columns (teicoplanin or vancomycin) than on their aglycone counterpart columns (TAG or 

VAG). However, for the compounds that were separated on both CSPs with identical mobile 

phases, most had higher enantioselectivity and resolution factors on the aglycone columns 

(Table 2). Figure 2 illustrates this observation for the vancomycin and teicoplanin based 

CSPs. 26 (Fig. 2 top left) is not resolved on the vancomycin CSP with the MTBE/ACN 

90/10 %v/v mobile phase; its a and Rs values are respectively 1.08 and 1.3 when the VAG 

column is used with the same mobile phase. For 31 (Fig. 2 top right), going from the 
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vancomycin to the VAG CSP with the same mobile phase, the a and Rs values increase from 

1.15 to 1.3 and from 1.2 to 1.4, respectively. 

A similar improvement with the teicoplanin and TAG columns is also shown in 

Figure 2 (bottom) for Compounds 1 and 8 and the hex/EtOH 50/50 %v/v mobile phase. 

However, in some cases, the teicoplanin and vancomycin CSPs performed better than their 

aglycone counterparts. For example, Compounds 25, 27 and 34 are separated by the 

teicoplanin CSP and not by the TAG column; Compounds 10, 19, 27, 40, 41 and 42 are 

separated by the vancomycin CSP and not by the VAG column. The two forms of the 

macrocyclic glycopeptide selectors should be considered. The native form of glycopeptide 

seems capable of separating, at least partially, more enantiomeric pairs than the 

corresponding aglycone form. Similar results were reported previously for amino-acids and 

the teicoplanin and TAG columns [33]. 

The ristocetin A column was able to resolve 29 of the 42 chiral sulfoxide compounds. 

This is only 4 compounds fewer than the TAG CSP and not significantly different from the 

number of compounds that the vancomycin and VAG columns could resolve. Of the 83 

chromatograms obtained on the ristocetin A CSP that showed observable separation, 26 had 

baseline separation of the enantiomers (Table 3). This is significantly higher than the figures 

obtained with the vancomycin or VAG columns, especially in the number of baseline 

resolutions. It is, however, significantly lower than the figures obtained with the teicoplanin 

or TAG columns. The ristocetin column is useful in the separation of chiral sulfoxide and 

sulfonate esters. It is the only column able to separate the sulfinate methyl ester, Compound 

37. However, the mobile phase composition must be properly optimized. 
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The complementary nature of the macrocyclic glycopeptide CSPs is well known [34]. 

A partial separation obtained on one CSP is often converted in a baseline separation when 

changing to a related glycopeptide chiral selector. This effect was observed for the 

sulfoxides 25 and 31 that were poorly separated by the teicoplanin based CSPs and well 

separated by the ristocetin A CSP (Fig. 1) and, to a lesser extent, for several sulfinate esters 

(39, 40 and 42) that were partly separated by the vancomycin CSP only. 

3.2. 

Table 3 lists the cumulative number of separations obtained with the different mobile 

phases. Clearly, the three normal-phase mobile phases and the methanol- containing 

reversed mobile phases are the most useful in separating these compounds with the 

macrocyclic glycopeptide CSPs. The w-hexane-alcohol mobile phases were both able to 

separate 34 compounds 6om the set of 42. Ethanol seems to be a better polar organic 

modifier than isopropyl alcohol since 97 observable chromatograms were obtained with »-

hexane-ethanol normal mobile phases on the five CSPs. 45 of these separations were 

complete with a baseline return between peaks. The M-hexane-ethanol mobile phases were 

most useful with the TAG CSP. The %-hexane-IPA mobile phases could separate the same 

34 compounds but on a lower number of stationary phases; only 87 chromatograms showed 

some separation with only 39 of them being baseline separations (Table 3). The MTBE-

ACN mobile phases are low polarity mobile phases made of dipolar aprotic solvents. They 

were able to separate 31 compounds only, but with many different CSPs since they have the 

highest number of successful hits: 107. If these 107 separations are compared to the 31 

compounds separated by this mobile phase, it means that an average of 3.5 CSPs were 



www.manaraa.com

82 

producing a chromatogram with observable enantioseparation for each 31 compounds. 

However 84% of these chromatograms were partial separations since only 17 were baseline 

separations. The MTBE-ACN mobile phases were most useful with the ristocetin A, 

vancomycin and VAG CSPs. It was shown that methanol, a polar hydrogen bond donor 

solvent, was a better organic modifier in the MTBE based mobile phase. The MTBE/MeOH 

97/3 % v/v mobile phase showed a 10% improvement in the number of enantioseparated 

compounds and a doubling of the number of baseline separations compared to the 

MTBE/ACN 90/10 % v/v composition (study done on vancomycin and VAG CSPs only, 

Table 3). 

The reversed phase mode (with methanol-buffer mobile phases) was highly effective 

for the separation of chiral sulfoxides and related compounds as well. A total of 35 

compounds, 32 of which belonged to the set of compounds separated by the normal mobile 

phases, were separated. 24 was not separated by the methanol-buffer mobile phase, but 34, a 

tosyl derivative, and 37, a sulfonate ester, were separated with the methanol reversed phase 

and not with the normal-phase mobile phases. If 92 chromatograms showed 

enantioselectivity, only 30 were baseline separations (Rs > 1.5) (Table 3). Table 3 shows 

that the methanol-buffer mobile phase are much more effective than the acetonitrile-buffer 

mobile phases. The ACN-buffer mobile phases could resolve only 26 solutes of the set of 

sulfur-containing compounds. 56 chromatograms showed observable enantioselectivity, that 

is an average value of two different CSPs per resolved compounds. Only 6 of the 56 

chromatograms showed baseline separation. The ACN-buffer reversed-phase systems are 

not as effective in separating sulfoxide enantiomers with the TAG CSP than the methanol-
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buffer mobile phases. Table 2 shows that each time a partial resolution is obtained with an 

ACN-buffer mobile phase a higher a value is obtained with the corresponding methanol-

buffer mobile phase. Note that when the RP ACN line is missing for a compound in Table 2, 

it means that no resolution was obtained on all CSPs (o: = 1). One exception should be 

mentioned: the sulfonate ester enantiomers of 41 could be partially resolved only by the 

vancomycin CSP in association with a ACN-buffer reversed mobile phase (Fig. 1). 

The polar organic methanol mobile phases could separate 28 compounds with 48 

chromatograms with observable separation (14 were baseline separations). All the 28 

compounds could be better separated by another mobile phase either in the normal or in the 

reversed phase modes (Table 2). The teicoplanin based CSPs where the most compatible 

with the polar organic methanol mobile phases. The results were worse with the polar 

organic ACN mobile phases that could only separate 13 compounds and only 3 where 

completely resolved. The ristocetin CSP gave the best results with the polar organic ACN 

mobile phases (Fig. 4). 

3.3. of f/zg macrocyc/fc g/ycqpepfzde CSR? 

Altogether the macrocyclic glycopeptide CSPs were able to separate the whole set of 

the 34 sulfoxide enantiomers and tosylated derivatives. Five of the eight sulfonate esters 

were also separated. The largest set of chiral sulfoxide compounds studied for 

enantioselective separation found in the literature contained 23 sulfoxide derivatives [36]. 

Only five of these compounds were also present in our set of 42 compounds. These 

compounds were separated on four different cellulose or amylose polysaccharide CSPs with 
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a %-hexane-IPA 90/10 v/v normal mobile phase only. The best CSP was able to resolve 16 

compounds, of which only two were baseline separated. The compounds in this previous 

study that are common with ours, are 1, 4, 5,16 and 21 (Table 1). With the same %-hexane-

IPA normal mobile phase, 1 is baseline resolved by the teicoplanin and TAG columns and 

almost baseline resolved by the ristocetin A column (Rs = 1.3, Table 2). This compound is 

partially resolved by the best polysaccharide CSP of Ref. 36 with a Rs value of 0.8. It is not 

resolved by the three other CSPs. Similar observations can be made with the other four 

common compounds. 

In another article, the capability of 8 commercial cellulose-based sorbents were 

screened for the enantiomeric separation of a set of 10 chiral sulfoxides [18]. Our 

compounds 1, 4 and 18 were part of this set. The mobile phase used was %-hexane-IPA 90-

10 v/v. The best enantioseparation of 1 was obtained with CSP Chiralcel OB with an a value 

of 1.72 giving a Rs value of 3.6. With the same mobile phase, teicoplanin resolves the 

enantiomers of 1 with an a value of 1.22 giving a Rs value of 4.27 (better efficiency) and 

TAG gave a = 2.02 and Rs - 2.2 (better enantioselectivity) (Table 2). Similarly, 4 was also 

best separated by Chiralcel OB (a = 1.58 and Rs = 3.11). The teicoplanin and TAG CSPs 

were also able to separate it with a baseline resolution (a= 1.44 and 1.47, Rs = 1.8 and 2.1, 

respectively). However, the values were slightly lower. Methyl dodecyl sulfoxide was part 

of the set of compounds in Ref. 14 and was not separated by Chiralcel OB and poorly 

separated by the Chiralcel OD column (a — 1.07, Rs = 0.6). Our compound 3, methyl hexyl 

sulfoxide is closely related. It was baseline resolved by both the teicoplanin and TAG CSPs 

in either the normal or reversed phase mode. 
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In a recent study, polar organic mobile phases (100% alcohol), reversed alcoholic 

mobile phases and M-hexane-IPA mobile phases were used with six polysaccharide 

phenylcarbamate CSPs to separate a set of Gve sulfoxide compounds [22]. Our compounds 1 

and 5 were part of this set. Every time a comparison was possible (same mobile phase), there 

was a macrocyclic glycopeptide CSP that could match the polysaccharide CSPs used [22]. 

3.4. 

3.4.7. Mzfwre of f&e Figure 3 shows the enantioselectivity 

factors obtained for a variety of substituted aryl methyl sulfoxides with the teicoplanin and 

TAG columns with two mobile phases: M-hexane-isopropyl alcohol (IPA) 90/10 v/v and 

methanol-pH 4 buffer 50/50 v/v. The a factor is plotted versus the para substituent on the 

benzene ring. The enantioselectivity factors decrease in the order: 

F>Cl>Br>H>CH3>CF3 

for the two CSPs and for the two mobile phases (normal phase mode and reversed phase 

mode). Clearly, the order corresponds to the decreasing electronegativity order for the 

halogen atoms, the hydrogen atom and the methyl group. The trifluoromethyl group does not 

St in this correlation. With three strongly electronegative atoms, it has a strong electron 

withdrawing capability. Also, the size of the substituents should be noted. The fluorine atom 

is the smallest halogen; the CF3 group is slightly bigger than the CH3 group and the H atom. 

3.4.2. PmzfzoM of f&e rz/zg swAsfifweMfj. Figure 4 shows that the enantioselectivity 

factors obtained with the meta substituted molecules were signiûcantly higher than the values 

obtained with the corresponding ortho or para isomers. The exception is ortho-bromophenyl 
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methyl sulfoxide separated by the teicoplanin CSP in the reversed phase mode. It has an a 

value of 1.2, slightly higher than that of meta-bromophenyl methyl sulfoxide (a= 1.17, Table 

2). In organic synthesis it is known that the methyl group and halogen substituents are ortho 

and para directors for electrophilic aromatic substitutions. The electron deficient 

intermediate complex can be stabilized only by ortho and para substituents. It is possible that 

the ortho and para positions of the methyl, chloro or bromo substituents produce an electron 

density on the sulfur atom less favorable for compound enantioselectivity than that obtained 

when the substitutents are in the meta position. However, the aromatic electron density and 

the electron environment of the sulfur atom are certainly not the only parameters acting on 

the compound enantioselectivity of sulfoxides by teicoplanin CSPs. Shape and steric 

repulsion are certainly involved in the mechanism [18]. 

J. 4.3. yàcfora. Using a thermodynamic approach, Ktister et al. claimed that steric 

hindrance was the main reason for chiral discrimination of sulfoxides by polysaccharide 

based CSPs in the normal phase mode [18]. Table 4 lists the enantioselectivity factors for a 

variety of phenyl sulfoxides and para-tolyl sulfoxides obtained with the teicoplanin and TAG 

CSPs and with normal and reversed-phase mobile phases. Four substituents in the table are 

common to phenyl and jpora-toluyl sulfoxides. They are the methyl, benzyl, (2-phenyl) ethyl 

and (1,1-dimethyl 2-phenyl) ethyl substituents. Every time the enantiomers of these 

sulfoxides are separated (a > 1), the a factor is better in the same experimental conditions for 

the phenyl sulfoxide than for the corresponding tolyl compound. It seems that the main part 

of this effect is due to steric hindrance. The slight change in molecular volume between the 

phenyl and the ̂ oro-tolyl group makes a significant difference for the chiral selector. 
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Steric bulk seems to be the dominant factor explaining the increased a values 

obtained when the bulky tert-butyl group replaces the methyl group (1 and 12, Table 4). 

Intramolecular stacking may also be part of steric repulsion. Comparing the results obtained 

with 22 and 29 (phenyl sulfoxides) and 24, 27 and 30 (tolyl sulfoxides), a dramatic increase 

of the enantioselectivity factor for the dimethylaryl-oc-substitued sulfoxides can be noted 

(Table 4). Figure 5 illustrates the intramolecular stacking that could be favored with 29 

and 30 having two methyl groups that promote bending of the alkyl chain, allowing the two 

aromatic rings to interact. 22, 24 and 27 have also two aromatic rings that could stack but 

possible free rotations around the CH? groups decrease the stacking. The stacked form of the 

compounds seems to interact strongly with some chiral selector sites. Either reduced or no 

enantiorecognition is obtained when stacking is reduced (Table 4). The stacking effect is 

more pronounced with the apolar »-hexane/IPA mobile phase (where %-n interactions are 

favored) than with the polar methanol/buffer mobile phase. 

3.4.4. fAe growp. Table 5 lists the results obtained with the teicoplanin 

CSP for the analyses of different compounds in which the sulfoxide group has been 

modified. For example, 32 is the N-tosyl analog of 1. The S-O group of 1 is replaced by 

S-N"-SOz-c^-CHj. Changing the sulfoxide group to the N-tosylated form signiûcantly 

decreased the chromatographic polarity of the molecule. Apparently, the N" group is much 

more hindered than a lone O group which is very active for H-bonding. The N-tosyl analogs 

are less retained in the normal phase mode and more retained in the reversed phase mode 
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(Table 5). The enantioselectivity factor, a, was less for all of the tosylated compounds 

except one in the normal-phase mode (Table 5). In the reversed phase mode, the results were 

mixed. Clearly the tosyl group alters the interaction between the chiral analyte and the CSPs 

in both normal and reversed phase modes. Steric interactions will increase in both modes. 

While hydrophobic interactions are more significant for the N-tosylated compounds in the 

reversed phase mode (Table 5), the corresponding %-% interactions do not seem to be 

enhanced in the normal-phase mode except for 34. Apparently, the increased retention and 

possible stacking with this molecule results in the elimination of enantioselective recognition. 

35 to 42 are sulfonate esters. The oxidation number of sulfur in these compounds is 

different from that of the sulfoxide compounds. This change is detrimental for compound 

enantioselectivity. Only the enantiomers of methyl /^-toluene sulfonate (35) could be resolved 

by the teicoplanin and TAG columns. Three of the seven suLGnate esters could not be 

resolved by any of the five CSPs studied. Ristocetin A was the only CSP able to partially 

resolve 37 and the vancomycin CSP could also partially resolve 40, 41 and 42 (Figure 1). 

All partial separations were obtained in the reversed phase mode. It should be pointed out 

that there are very few, if any, previously reported LC enantiomeric separations of sulfonate 

esters. However, these compounds are easily resolved by gas chromatography using 

cyclodextrin-based CSPs [37]. 

3.4. J. refg%#o?i order. The enantiomeric elution order was determined for 

all separations using a laser-based polarimetry detector and/or by injecting an enantiomer 

standard of known configuration. The first eluted enantiomer, for all compounds separated 

on the teicoplanin and TAG CSPs (but one) was the (<S)-(+)-enantiomer. The one exception 
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was methyl j?-biphenyl sulfoxide (17) where the (R)-(-)-enantiomer eluted first with all 

mobile phases. Its long and rigid /%zra-biphenyl substituent is very likely sterically altering 

its interaction with the teicoplanin or TAG chiral selector. Also, the orf/zo derivatives, 11 

and 20, showed a reversed enantiomeric retention order, i.e., the (7f)-(-)-enantiomer eluted 

first, but only in the normal-phase mobile phase of acetonitrile and methyl ferf-butyl ether 

only. With the six other mobile phases, the (S)-(+)-enantiomer of these two analytes eluted 

first. 

Conversely, all chiral sulfoxides separated on the ristocetin A, the vancomycin and 

the VAG CSPs showed the (7()-(-)-enantiomer eluting first. This behavior was maintained 

with the optimized MTBE-MeOH mobile phase and the vancomycin and VAG CSPs. Figure 

6 shows the separation of the enantiomers of 29 on the TAG column (left) and the VAG 

column (right). The trace of the optical rotation detector shows that the enantiomeric 

retention order of the two enantiomers is reversed. The (j)-(+)-enantiomer elutes first on the 

TAG column and last on the VAG column. There were no exceptions for the vancomycin 

and VAG columns. It should be recalled, however, that these columns could only separate 

30 and 27 compounds, respectively, from the set of 42. With the ristocetin A column, the 

only exceptions found were the benzyl derivatives, 16, 25 and 26, and the diphenylmethyl 

derivative, 31. The (^)-(+)-enantiomers of these four analytes eluted first but with the 

reversed phase mode methanol-buffer system, only. 

These results show again the complementarity of the macrocyclic glycopeptide CSPs. 

There are multiple chiral interaction sites on a given CSP and the individual chiral selectors 
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of this class of compounds are not the same. For a given compound, if no enantioseparation 

is obtained in the different mobile phase modes with a particular CSP, chances are that 

another macrocyclic glycopeptide based CSP will separate the enantiomers [38]. 

Furthermore, for neutral sulfoxides, at least two different glycopeptide CSPs can have the 

opposite enantiomeric retention order. 

2.4. Summary and conclusion 

The macrocyclic glycopeptide CSPs are very useful for the separation of enantiomers 

of chiral sulfoxides. The teicoplanin and TAG CSPs with the %-hexane-IPA mobile phase 

(i.e., normal phase mode) and the methanol-buffer mobile phase in the reversed phase mode 

are the most effective CSP-mobile phase associations for the enantioseparation of these 

compounds. An important feature involving the chiral recognition mechanism of sulfoxide 

compounds seems to be steric repulsion. Also it appears that intramolecular stacking of 

some of the larger chiral sulfoxides can greatly affect its enantiorecognition. Compared to 

chiral sulfoxides, the sulfonate esters, with an increased oxidation state of the sulfur atom, are 

poorly separated by the macrocyclic antibiotic CSPs. The enantiomeric retention order of the 

enantiomer showed a great deal of consistency for any single CSP and mobile phase. 

However, reversing the enantiomeric retention order is possible by changing the CSP. 
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Figure Legends 

Figure 1 : Overview of the results arranged per solute and per CSP. The length of the 
bars indicates how many mobile phase were capable to produce observable 
separation of the enantiomers of the solute. White bars: number of observable 
enantioselective separations (a> 1.02); dark bars: number of baseline 
separations (Rs > 1.5). 

Figure 2: Effect of the macrocyclic glycopeptide sugar units on compound 
enantioselectivity Top: Vancomycin and Compounds 26 (left) and 
Compounds 31 (right). Mobile phase: MTBE/ACN 90/10 v/v, 1 mL/min. 
Bottom: Teicoplanin and Compounds 1 (left) and Compounds 8 (right). 
Mobile phase: hex/EtOH, 50/50 v/v 2 mL/min. 

Figure 3: Effect of the substituents of the para substituted phenyl methyl sulfoxides on 
the compounds enantioselectivity. Thick lines: teicoplanin CSP, dotted lines: 
TAG CSP; squares: methanol/buffer(20/80 v/v) reversed mobile phase, 
triangles: «-hexane/IPA (90/10 v/v) normal mobile phase. 

Figure 4: Structural effect of the phenyl substituents of the ortho, meta or para 
substituted phenyl methyl sulfoxides on the compounds enantioselectivity. 
Top figures: w-hexane/IPA (90/10 v/v) normal mobile phase; bottom figures: 
methanol-buffer (20/80 v/v) reversed mobile phase. 

Figure 5: Left: Possible intramolecular stacking by interactions. Right: the stacking 
is favored by the two methyl groups in «position of the sulfur atom. 

Figure 6: Illustration of the enantiomeric retention order reversal. Left: Compound 29 
separated with the TAG column, the (S)-(+)-enantiomer elutes first, normal 
mobile phase (%-hexane/EtOH 50/50 v/v); right: on the VAG column, the (R)-
(-) enantiomer elutes first, normal mobile phase (MTBE/ACN 90/10 v/v). 
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Table 1 
Structures of 42 stereogenic sulfur-containing compounds and the number of observable enantiomeric 
separations achieved for each. 

compound 
number R%^ Rz" SO^ mw 

separati 
ons° 

1  C6H5 CH3 140 17 

2  CH3CH2CH2CH2CH=CH CH3 146 13 

3  CH3CH2CH2CH2CH2CH2 CH3 148 7  

4  C6H5 CH2=CH 152 8  

5  PCH3C6H4 CH3 154 10 

6  mCH3C6H4 CH3 154 14 
7  0CH3CGH4 CH3 154 15 

8  FC6H4 CH3 159 16 
9  pCC6H4 CH3 1 7 4 . 5  12 

10 mCIC6H4 CH3 1 7 4 . 5  13 

11  OCC6H4 CH3 1 7 4 . 5  23 

12  C6H5 (CH3)3C 1 8 2  20 

13  aC10H7 CH3 1 9 0  21 

14 C6H5CH2CH2CH=CH CH3 194 15 

15  CF3C6H4 CH3 2 0 8  10 

16 C6H5 C6H5CH2 2 1 6  18 

17  C6H5C6H4 CH3 2 1 6  17  

18 pBrC6H4 CH3 219  12 

19  mBrC6H4 CH3 2 1 9  14 
20 oBrC6H4 CH3 219  22 
21  CH3C6H4 C6H5CH2 2 3 0  10 

22 C6H5 C6H5CH2CH2 2 3 0  18 

23 C6H5 CH3C6H4CH2 2 3 0  14 

24 CH3C6H4 C6H5CH2CH2 2 4 4  13 
25 C6H40CH3 C6H5CH2 2 4 6  12 
26 CIC6H4 C6H5CH2 2 5 0 . 5  19 

27 CH3C6H4 C6H5CH2CH2CH2 2 5 8  2  

28 bC10H7 C6H5CH2 2 6 6  19 

29 C6H5 C6H5CH2CH2C(CH3)2 2 7 2  28 

30 CH3C6H4 C6H5CH2CH2C(CH3)2 2 8 6  14 
31 C6H5 (C6H5)2CH 2 9 2  24 

32 CGH5 CH3 Tosyl 2 7 9  12 
33 C6H5 C6H5CH2 Tosyl 3 5 5  7  

34 C6H5 C6H5CH2CH2 Tosyl 3 6 9  3  

35 CH30 C6H5CH2 s . 1 7 0  7  

36 CH3CH20 CH3C6H4 s .  1 8 4  0  

37  C6H5CH2CH2CH20 CH3 8 . 1 9 8  1  

38 CH3(CH3)CH0 CH3C6H4 
e . 

8 . 1 9 8  0  

39 CH3CH2CH20 CH3C6H4 S  .  1 9 8  0  

40 CH3CH2CH2CH20 CH3C6H4 
e . 

8 . 2 1 2  3  
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e. 
41 CH3CH(CH3)CH20 CH3C6H4 s. 226 1 

e. 
42 CH3CH2CH(CH3)0 CH3CGH4 s. 226 3 

e. 

a) The general structure is R,-SO-Rz. Compounds 1 to 31 are sulfoxides; Compounds 32 to 35 are 
tosylated sulfoxides (tosyl = p-toluene sulfonate, SO was replaced by SN-SO2-QH4-CH3); Compounds 
36 to 42 are sulfonate esters. 

b) separation = cumulative number of observable enantioseparations on the five CSPs with the 7 mobile 
phases (total = 35 essays per compound). 

C6H5 = phenyl ring; p, m, o = para, meta, ortho phenyl substitution, C10H7 = naphthalenyl group; a, b = alpha 
or beta connected to the SO group, s.e. = sulfonate ester with the R1-OSO-R2 asymmetric center. 



www.manaraa.com

96 

Table2 
Chromatographic results obtained with selected chiral sulfur-containing compounds on three 
macrocyclic antibiotic CSPs. 

ristocetin A teicoplanin teicoplanin aglycone 
mobile phase ki alpha Rs k% alpha Rs k, alpha Rs 
1 methyl phenyl sulfoxide 
RP MeOH 0 . 6 8  1  0 1 .  . 2 7  1 .  . 11 0 ,  ,  5  1 . 1 5  1 . . 13  1 .  ,2 

PO MeOH 0 . 2 1  1  0 0  . . 15 1 . . 4 0  0  . ,  8  0  . 4 6  1 . . 3 8  1 .  .  3  

PO ACN 1 . 2 3  1 . 9 4  3  .  , 8  1 . , 7 9  1 , . 14 0  ,  , 6  2  . 1 7  1  0 

NP hex -E tOH 3  . 1 5  1 .15  1 . . 7  8 . 90 1 .  ,  11  2  ,  ,  1  3  . 3 6  1 .  . 3 4  2 . .  7  

NP hex-IPA 11 .  7  1 . 0 5  1 .  . 3  1 9 . 3 4  1 . . 2 2  4  ,  ,  3  13  .  1  2  .  . 0 2  2  .  .  2  

NP MTBE-ACN 8 . 1 3  1 . 1 1  1 .  5  9 . 80 1 .  . 0 3  0 .  ,  2  1 5 . 8  1  0 

5 p-toluyl methyl sulfoxide 
RP MeOH 1 . 2 3  1  0 2  .  50 1 , . 12 1 , ,  3  2  . 1 5  1 .  . 19  1 .  ,  7  

PO MeOH 0  . 1 9  1  0 0 .  21 1 .  . 4 3  1 ,  , 0  0  . 5 6  1 .  . 5 0  1 .  , 9  

NP hex -  E tOH 2  . 7 2  1  0 6  .  90 1 .  ,  17  2  .  , 7  3  . 1 4  1 .  . 6 4  3  ,  ,  3  

NP hex - IPA 3  . 5 2  1 . 1 6  0  .  8  7  .  17  1 .  , 57  2  .  ,  1  6 . 9 3  2  .  . 0 8  2  .  ,  3  

NP MTBE-ACN 5 . 80 1 . 0 2  0  . 3  6  .  90 1  0  11 .5  1  0  

G m-toluyl methyl sulfoxide 
RP MeOH 2 . 0 0  1  0 1 .  82 1 . ,  17  1 .  , 3  1. 08 1 .  . 3 3  2  .  , 1  

RP ACN 1 . 0 7  1  0  1 .  37 1 ,  . 07 1 ,  , 0  1 .  34  1  0  

PO MeOH 0 . 1 3  1  0 0  . 24 1 . . 4 1  1 .  ,  2  0 . 3 9  1 .  . 5 9  2  .  . 9  

NP hex -E tOH 5  . 44  1 . 0 6  1 . 25  6  .  87 1 .  . 3 2  3  .  , 4  1 3  . 2  1 .  . 5 3  3  .  . 2  

NP hex - IPA 1 8 . 9  1  0 26 1 . 4 5  2  .  . 00 3  .  ,  0  7 . 9 0  2  .  .  15  3  

NP MTBE-ACN 7  . 4 7  1 . 0 5  0  . 9  8  .  40 1  0  57  .  0  1 .  . 1 6  1 .  .  8  

7  o-toluyl methyl sulfoxide 
RP MeOH 1 . 4 7  1  0 4  .  93 1  . . 07 1 .  .  3  1 . 5 9  1 .  . 1 6  1 ,  . 4  

PO MeOH 0 . 1 7  1  0 0  . 21 1 , . 2 9  1 , .  0  0  . 5 3  1  . . 3 3  1 ,  .  5  

PO ACN 1 . 5 2  1 . 0 5  0  . 8  2  .  00 1  0 1 . 5 5  1  0 

NP hex -E tOH 2 . 4 8  1 .12  1 . 4  6  .  00 1. . 0 9  1. ,  0  4  . 9 0  1 .  . 31  3  

NP hex-IPA 8 . 6 0  1  .10  0  . 5  8  .  07 1. . 2 9  1, .  0  1 3  . 6  1, . 7 0  2  .  .  3  

NP MTBE-ACN 3 1 . 8  1 .  15  1. 2  7  .  20 1. ,  1 1  1, , 4  1 4  . 1  1 0  

8 p-fluorophenyl methyl sulfoxide 
RP MeOH 0 . 68 1 0  1. 23 1. . 1 4  1. .  3  1 . 0 7  1. . 2 8  1 .  7  

PO MeOH 0  . 1 9  1 0  0  . 19 1 , . 4 8  1. .  0  0  . 4 2  1, . 6 7  2  . 4  

NP hex-EtOH 3  . 3 5  1 0  8  .  40 1, . 2 6  1, .6 3 . 2 1  1, . 6 9  3  .  7  

NP hex-IPA 1 9 . 6  1 . 1 1  1. 1 6  .  13 1, . 71 1. , 9 1 3  . 1  2  .  . 0 2  2  . 6 

NP MTBE-ACN 7 . 1 3  1. 04 0 . 6 8  .  00 1 0  1 2  . 3  1, . 0 8  0  .  6  

9 p-chloropheny1 methyl sulfoxide 
RP MeOH 1 . 0 3  1 0  2  .  00 1 . . 1 3  1 .  . 6 1 . 7 4  1 .  . 2 1  1 .  8  

PO MeOH 0 . 1 7  1  0 0  . 19 1 , . 4 8  1. ,  0  0 . 4 9  1. . 6 1  2  

NP hex-EtOH 2  . 7 2  1 0 6. 70 1. . 19 3  .  , 1 2 . 93 1 .  . 6 8  3  . 3  

NP hex - IPA 3  . 4 5  1 . 1 8  0 . 8  6. 93 1. . 6 3  2  .  ,  0  1 4 . 5  2 . . 3 4  2  . 9  

NP MTBE-ACN 5 . 80 1 . 0 2  0 . 4  6 . 70 1 0  1 1 .  0  1 0  
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ristocetin A teicoplanin teicoplanin aglycone 
mobile phase k, alpha Rs kj alpha Rs k% alpha Rs 
10 m-chlorophenyl methyl sulfoxide 
RP MeOH 2  , . 3 2  1  0 2 . 1 8  1  . 18 1 .  .  6  1 . 6 8  1 .  . 2 8  1 .  .  5  

RP ACN 1 .  . 2 8  1  0  1. 67 1  . 05 1 .  .2 1. 62 1  0 

PO MeOH 0  .  . 1 4  1  0 0  . 2 2  1 .  . 2 3  1 ,  .  0  0 . 4 2  1 .  . 6 2  2  .  . 2  

NP hex -E tOH 5  . . 2 7  1 .  03 0  .  . 5  6 . 7 6  1 .  . 2 2  3  , , 2  1 1 . 9  1 .  . 5 9  4  .  . 8 

NP hex-IPA 14 . 6 1  0 2 0 . 9  1 .  . 57 2  .  ,  9  7 . 00 2  .  . 6 9  3  .  ,  1  

NP MTBE-ACN 4  . . 4 4  1 .  05 0  .  .  8  4 . 5 0  1  0 3 6 . 1  1 ,  . 0 9  1 .  ,  1  

11 o-ohlorophenyl methyl sulfoxide 
RP MeOH 2  .  . 7 0  1  0 2 . 73 1 .  . 19 1 .  .  6  2  . 1 5  1 .  . 2 4  1 .  .  6  

RP ACN 1 ,  . 4 4  1  0 1. 96 1 .  . 07 1 .  . 2  1 . 9 1  1  0 

PO MeOH 0  .  ,  15  1  0  0 . 2 8  1 ,  . 34 1 .  . 2  0 . 6 0  1 ,  . 6 7  3  .  . 4  

PO ACN 0  .  . 5 0  1 .  16 0 .  . 7  0 . 88 1  0  1 . 1 7  1 .  .  11  0  ,  .  6  

NP hex-EtOH 3  .  ,  10  1 .  04 0  ,  ,  6  4  . 3 7  1 .  . 1 6  2  .  , 2  9 . 8 0  1 .  . 4 0  3  .  ,  5  

NP hex - IPA 7  .  . 00 1  0 12 . 0 1 .  . 3 8  1 .  .  6  8 . 0 8  2  , . 0 0  2  ,  . 4  

NP MTBE-ACN 2  .  . 9 5  1 .  11  1 .  .  4  3 . 00 1 ,  .  11  1 ,  . 5  3 0  . 5  1 .  . 0 6  0  .  ,  6  

12 phenyl tart -butyl sulfoxide 
RP MeOH 1 .  . 6 4  1 .  08 0 .  .  8  2  . 1 3  1 .  . 06 0  .  .  8  1 . 3 0  1 ,  . 2 0  1 .  .  5  

PO MeOH 0  .  . 00 1  0 0 . 0 2  1  0  0 . 1 1  1 .  . 7 6  0  , .  6  

PO ACN 0  .  . 91 1 .  04 0  .  .  5  1 . 4 0  1  0  0. 88 1  0  

NP hex -E tOH 0  .  . 79  1  0  1 . 4 7  1 ,  . 3 0  3  .  . 4  0. 93 1 .  . 5 6  4  .  ,  1  

NP hex - IPA 1 .  , 46  1 .  20 1 .  . 3  0 . 80 2  , . 5 0  1 .  ,  9  1 . 5 0  1 .  .  81  2  , .  5  

NP MTBE-ACN 4  .  . 80 1 .  33 2  .  4  2  . 2 3  1 .  . 12 0  .  ,  8  4 . 5 0  1 .  . 1 8  1 .  .  2  

13 a-naphthalenyl methyl sulfoxide 
RP MeOH 3  .  50 1  0 1 1 . 6 1  1 .  , 18 3  .  .  0  3 . 56 1 ,  . 4 3  4  .  .  8  

RP ACN 0  .  94 1  0 3 . 8 3  1 ,  , 03 0  .  .  3  3 . 05 1 .  , 07 0  .  .  7  

PO MeOH 0  .  21  1  0  0 . 2 9  1  , . 5 3  2  .  ,  0  0 . 7 9  1 .  . 6 5  3  .  . 5  

PO ACN 1 .  28 1 .  09 1 .  45  1 .67  1  0  1 . 6 6  1  0 

NP hex -E tOH 2  .  04 1 .  14 1 .  4  5 . 80 1 .  . 4 4  3  ,  .6 5 . 5 6  1 ,  . 7 0  4  .  .  4  

NP hex - IPA 7  .  80 1  0  7  . 1 3  2  .  . 18 2  .  .  5  1 6 . 5  1  0 

NP MTBE-ACN 8  .  50 1 .  20 2  .  5  6 . 1 3  1 .  . 07 0  .  .  8  12 . 8 1 .  . 12 0  .  .  9  

18 p-bromophenyl methyl sulfoxide 
RP MeOH 1 .  23 1  0 2 . 5 0  1 .  , 12 1  .  . 3  2 . 1 5  1 .  . 19 1 .  .  7  

PO MeOH 0 .  19 1  0 0 . 2 1  1 .  . 4 3  1 .  .  0  0 . 56 1 ,  . 5 0  1 ,  .  9  

NP hex -E tOH 2  .  72 1  0 6 . 9 0  1 .  .  17  2  .  .  7  3  . 1 4  1 .  . 64 3  .  .  3  

NP hex - IPA 3  .  52 1 .  16 0  .  8  7  . 1 7  1 .  . 57  2  .  ,  1  6. 93 2  , . 08 2  , .  2  

NP MTBE-ACN 5  .  80 1 .  02 0  .  3  6 . 9 0  1  0 1 1 . 5  1  0 

19 m-bromophenyl methyl sulfoxide 
RP MeOH 2  .  70 1  0 2  . 7 1  1 .  17  1 .  , 3  1 . 7 5  1 .  . 3 2  3  .  .  0  

RP ACN 1 .  51  1  0  1 . 8 1  1 .  09 1 .  , 2  0 . 6 6  1  0  

PO MeOH 0  .  16 1  0 0 . 2 6  1 .  25 1 .  , 2  0 . 4 8  1 ,  . 67 4  .  9  

NP hex-EtOH 6  .  10 1 .  01 0  .  2  6 . 7 6  1 .  24 3  .  , 6  13 . 7 1 .  . 72 4  , .  5  

NP hex - IPA IS  i .  1  1 .  04 0  .  5  2 4 . 5  1 .  80 2  .  ,  9  7 . 5 0  2  .  . 7 3  3  .  1  

NP MTBE-ACN 4  .  37 1 .  04 0  .  6  4  . 7 0  1  0 3 7 . 5  1 .  ,  1 1  1 .  . 2  

20 o-bromophenyl methyl sulfoxide 
RP MeOH 5  .  20 1  0 3  . 5 5  1 .  20 1 .  .  7  2 . 66 1 .  . 2 8  2  . 4  

RP ACN 1 .  78 1  0 2  . 4 2  1 .  09 1 .  , 3  2  . 3 4  1  0  

PO MeOH 0  .  17  1  0  0 . 3 1  1 .  32 1 .  . 3  0 . 68 1 ,  . 5 6  3  . .  9  

PO ACN 0  .  82 1  0  0 . 8 8  1  0  1 . 3 8  1 .  . 09 0  .  .  6  
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ristocetin A teicoplanin teicoplanin aglycone 
mobile phase k, alpha Rs k| alpha Rs k% alpha Rs 
NP hex-EtOH 3  . 3 0  1  . 5 0  1  4  78 1  17  2  1  12  .4 1  49 3  2  

NP hex-IPA 7  . 5 5  1  0 1 3  . 4 3  1  47 1  7  9. 33 2 02 3  0  

NP MTBE-ACN 3  . 13 1  . 1 1  1  . 4 5  3  20 1  11 1  2 34 .2 1  07 0 7  

22 phenylethyl phenyl sulfoxide 
RP MeOH 5  . 2 0  1  0 7  20 1  0 3  .  90 1  0  

RP ACN 1  . 4 4  1  0 4  20 1  06 0  7  3  .  95 1  0 

PO MeOH 0  05 1  0 0 14 1  0  0  . 26 1  26 1  0 

PO ACN 0  . 6 2  1  10 0  . 5  0 67 1  0 1 . 33 1  0 

NP hex-EtOH 2  . 4 0  1  09 1  .3  3  48 1  0  7  .  05 1  26 1  8  

NP hex-IPA 4  . 6 6  1  12 1  .4  9  54 1  17  0  7  3  .  92 1  47 1  3  

NP MTBE-ACN 2  90 1  . 1 8  1  7  2  93 1  10 0  9  34 . 5  1  0  
26 p-chlorophenyl benzyl sulfoxide 
RP MeOH 2  06 1  . 8 0  8  4  64 1. 05 0  8  4  .  20 1  0 

RP ACN 1 15 1  . 2 5  1 8  4  64 1. 05 0  7  4  .  62 1  0  

PO MeOH 0  05 3  10  1  5  0  06 1  0 0  . 37  1  0  

NP hex -E tOH 1 17 1  16 1 2  2  57 1. 09 1  0 1 . 36 1  16 1 2  

NP hex-IPA 1 13 1 0  2  65 1. 17  0  7  6  38 1 29 1 0  

NP MTBE-ACN 2  33 1  0  2  10  1  06 0  3  4 90 1 0  

28 jS-naphthalenyl benzyl sulfoxide 
RP MeOH 7  40 1  45 4  11 .5  1  0  7 00 1 11  1  2  

RP ACN 1  69 1  29 2  2  8  92 1  05 0  5  7 60 1  0  

PO MeOH 0  06 1  50 0  6  0  11  1 0  0  52 1 07 0  3  

NP hex -E tOH 1 51  1  0  3  20 1. 08 1  3  2  80 1 22 2  2  

NP hex-IPA 3  44 1 0  3  47 1 38 0  8  6 00 1 33 1 1  

NP MTBE-ACN 7  00 1  0 2  83 1  06 0  4  7 70 1 04 0  2  
29 1,1-dimethyl 3-phenylpropyl phenyl sulfoxide 
RP MeOH 5  00  1 15  1  5  6  67 1. 42 1 4  3 90 1 19 1  6  

RP ACN 1  42 1 13  1 4  6  25 1. 20 1 7  5  64 1 0  

PO MeOH 0 00 1 0  0  02 1 0  0 14  1 50 1  1  

PO ACN 0 55  1 27 1 5  0  63 1  0  0 67  1 0  

NP hex -E tOH 0  55  1  27  1 0  1. 20 1. 64 4  3  0 85 1 57  2  4  

NP hex-IPA 0  39 1 33 1 2  1  40 3  .  96 4  6  3 55 1 95 2  1 

NP MTBE-ACN 3  40 1 47 4  7  67 1. 16 0  9  3 50 1  20 1 
31 diphenylmethyl phenyl sulfoxide 
RP MeOH 5  00 1 27 2  7  8  .  53 1 . 15 1  1 5  26 1  10 0  8  

RP ACN 1. 36 1. 24 1 5  8  .  00 1. 16 1 3  6 90 1 05 0  6  

PO ACN 0  32 1 28 1 5  0  . 29 1 0  0 67 1  0  

NP hex -E tOH 0  79 1 25 1. 6 1. 93 1. 05 0  7  1. 26 1  06 0  6  

NP hex-IPA 0. 52 1 56 1 6  2  .  85 1 0  6 38 1 0  

NP MTBE-ACN 1. 27 2  00 6. 4  1 . 30 1 . 41 3  2  3 70 1 0  

RP = reversed phase, PO = polar organic mode, NP = normal phase; k% = retention factor of the Srst eluting 
enantiomer, alpha = enantioselectivity factor, Rs = enantioresolution factor. Average values 6om triplicate 
analyzes, standard deviation below 0.08. A missing mobile phase line means that no separations were obtained 
on any CSPs. 
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Table3 

Observable enantioseparations sorted by stationary phase type and mobile phase 
composition. 

compounds separated separation (a> 1.02) baseline separation (Rs 
21.5) 

number percentage number percentage* number percentage*" 

STATIONARY PHASES 

ristocetin A 29 69% 81 28% 26 32% 
teicoplanin 35 83% 142 48% 48 34% 
TAG 33 79% 134 46% 71 53% 
vancomycin 30 71% 60 24% 3 5% 
VAG 27 64% 83 28% 6 7% 

MOBILE PHASES 

RP MeOH-buffer 35 83% 92 43% 30 33% 
RP ACN-buger 26 62% 56 27% 6 11% 
PO MeOH 28 67% 42 20% 14 33% 
PO ACN 13 31% 19 9% 3 16% 
NP hex-EtOH 34 81% 97 46% 45 47% 
NP hex-IPA 34 81% 87 41% 39 45% 
NP MTBE-ACN 31 74% 107 50% 17 16% 
NP MTBE-MeOH 29" 69% 50" 59%" 11 22% 

total 39 93% 500 34% 154 31% 

RP = reversed phase, PO = polar organic mode, NP = normal phase 
a) percentage of observable separations from the total number of analyses done (42 compounds x 7 

mobile phases = 294 analyses per stationary phase, and 42 compounds x 5 mobile phases = 210 
analyses per mobile phase). 

b) percentage of baseline separations obtained from the non optimized separations. 
c) results obtained with the 97/3 optimized mobile phase composition but on vancomycin and VAG CSPs 

only (84 analyses instead of 210). 
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Table 4 

Enantioselectivity factor for phenyl and toluyl sulfoxide chiral compounds 

CSP teicoplanin TAG 

compound R Hex/IPA MeOH/buffer Hex/IPA MeOH/bufk 
number susbtituent 90/10 v/v 20/80 v/v 90/10 v/v r 

50/50 v/v 

1 CH] 1.22 1.11 2.02 1.13 
4 vinyl 1.44 1.06 1.46 1.19 
12 t-Bu 2.50 1.06 1.81 1.20 
16 benzyl 1.09 1.00 1.12 1.07 
22 1.17 1.00 1.47 1.00 
23 CH^CH] 1.00 1.00 1.09 1.07 
29 C(CH3)2CHzCH2(j) 4.00 1.42 1.95 1.19 
31 CH(4))2 1.00 1.15 1.00 1.10 

5 CHs 1.22 1.10 1.65 1.11 
21 benzyl 1.00 1.00 1.00 1.08 
24 CH2CH2* 1.00 1.02 1.30 1.00 
27 CH2CH2CH24* 1.00 1.00 1.00 1.00 
30 C(CH3)2CH2CH2(|) 2.24 1.31 1.33 1.15 
35 OCH3 1.71 1.09 2.00 1.20 
36 OCH2CH3 1.00 1.00 1.00 1.00 
38 OCH(CH3)CH3 1.00 1.00 1.00 1.00 
39 OCH2CH2CH3 1.00 1.00 1.00 1.00 
40 OCH2CH2CH2CH3 1.00 1.00 1.30 1.00 
41 OCHzCH(CH3)CH3 1.00 1.00 1.00 1.00 
42 OCH(CH3)CH2CH3 1.00 1.00 1.00 1.00 

Vinyl = CHMZHz; t-Bu = C(CHa)3; benzyl = CH^; - phenyl ring. 
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Table 5 
Chromatographic results obtained with sulfoxides and the corresponding N-tosylated 
compounds and sulfonate esters with the teicoplanin CSP. 

Mobile phase Hexane/IPA 90/10 v/v Methanol/buffer 20/80 v/v 

Number 
formula ki a Rs ki k% a Rs 

1 
32 

(&-SO-CH3 
dt-SNTs-CH] 

19.3 
4.60 

23.6 
5.20 

1.22 
1.13 

4.3 
0.7 

1.27 
3.00 

1.41 
3.33 

1.11 
1.11 

0.5 
1.1 

16 
33 

(&-SO-CH24) 
(#-SNTs-CH2(|) 

6.30 
4.73 

6.86 
5.44 

1.09 
1.15 

0.6 
0.7 

3.50 
9.83 

3.50 
11.1 

1.00 
1.13 

0.0 
1.1 

22 
34 

(ji-SO-CHzCH^ 
(#-SNTs-CH2CH2(|) 

9.54 
17.8* 

11.2 
17.8' 

1.17 
1.00 

0.7 
0.0 

7.21 
13.4 

7.21 
14.6 

1.00 
1.09 

0.0 
1.0 

35 
36 

CH3-4>-SO-0-CH3 
CH3-41-SO-O-CH2CH3 

0.47 
0.27 

0.80 
0.27 

1.71 
1.00 

1.5 
0.0 

0.20 
3.17 

0.22 
3.17 

1.09 
1.00 

1.1 
0.0 

a) experiments done with a 80/20 v/v hexane/IPA normal mobile phase 
(() = phenyl ring; NTs = N-SOz-cft-CHs 

Column Chirobiotic T, 25 cm, 4.6 mm i.d., 5 ^m silica particle size. 
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Figure 1 : Overview of the results arranged per solute and per CSP. The length of the bars 
indicates how many mobile phases were capable to produce observable separation of the 
enantiomers of the solute. White bars: number of observable enantioselective separations (a 
> 1.02); dark bars: number of baseline separations (Rs > 1.5). 
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Figure 2. ESect of the macrocychc glycopeptide sugar units on compound enantioselectivity 
Top: Vancomycin and Compounds 26 (left) and Compounds 31 (right). Mobile 
phase: MTBE/ACN 90/10 v/v, 1 mL/min. Bottom: Teicoplanin and Compounds 1 
(left) and Compounds 8 (right). Mobile phase: hex/EtOH, 50/50 v/v 2 mL/min. 
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Figure 3. Effect of the substituents of the para substituted phenyl methyl sulfoxides on the 

compounds enantioselectivity. Thick lines: teicoplanin CSP, dotted lines: TAG CSP; 

squares: methanol/buffer(20/80 v/v) reversed mobile phase, triangles: m-hexane/IPA (90/10 

v/v) normal mobile phase. 
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22 
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Figure 4. Structural effect of the phenyl substituents of the ortho, meta or para substituted 
phenyl methyl sulfoxides on the compounds enantioselectivity. Top figures: %-
hexane/IPA (90/10 v/v) normal mobile phase; bottom figures: methanol-buffer 
(20/80 v/v) reversed mobile phase. 



www.manaraa.com

106 

possible T-T stacking IT-TT stacking favored by two methyl groups 

Figure 5. LeA: Possible intramolecular stacking by 7T-7T interactions. Right: the stacking is 

favored by the two methyl groups in «position of the sulfur atom. 

1 v 
Wcopbrninqdycone 

29 " 

UV*ign*l 

n 
À 

* * * 

.J 

«Mcomycm aglycone 

Figure 6. Illustration of the enantiomeric retention order reversal. LeA: Compound 29 
separated with the TAG column, the (S)-(+)-enantiomer elutes first, normal mobile 
phase (m-hexane/EtOH 50/50 v/v); right: on the VAG column, the (R)-(-) 
enantiomer elutes first, normal mobile phase (MTBE/ACN 90/10 v/v). 
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CHAPTERS 

ENANTIOMERIC SEPARATION OF SUBSTITUTED DIHYDROFUROCOUMARIN 

COMPOUNDS BY HPLC USING MACROCYCLIC GLYCOPEPTIDE CHIRAL 

STATIONARY PHASES 

A paper published in Analytical and Bioanalytical Chemistry^ 

Tom Ling Xiao, Roman V. Rozhkov, Richard C. Larock and Daniel W. Armstrong 

ABSTRACT 

Enantiomeric separations by HPLC using the macrocyclic glycopeptides, teicoplanin 

(Chirobiotic T), teicoplanin aglycon (Chirobiotic TAG) and ristocetin A (Chirobiotic R), 

chiral stationary phases (CSPs) were achieved on a unique series of biologically active 

racemic analogues of dihydrofurocoumarin, The macrocyclic glycopeptides proved to be 

exceptionally selective for this class of compounds. All of the 28 chiral analogues were 

baseline separated on at least one of the macrocyclic glycopeptide CSPs. The teicoplanin 

CSP showed the broadest enantioselectivity with 24 of the compounds baseline separated. 

The TAG and the R CSPs produced 23 and 14 baseline separations respectively. All three 

mobile phase modes, i.e., normal phase (NP), reversed phase (RP), and new polar organic 

modes (PO), were evaluated. The NP mode proved to be most effective for the separation of 

chiral dihydrofurocoumarins on all CSPs tested. In the reversed phase (RP) mode, all three 

^ Reprinted with permission from Analytical and Bioanalytical Chemistry, 955 (2002) 53-69. 
Copyright © Springer-Verlag 2003. All rights reserved. 
CSPs separated a similar number of compounds. It was observed that the structural 
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characteristics of the analytes and steric effects are very important factors leading to chiral 

recognition. Hydrogen bonding was found to play a secondary role in chiral discrimination in 

the normal phase and polar organic modes. Hydrophobic interactions are important for chiral 

separation in the reversed phase mode. When coupled with circular dichroism, using the 

exciton coupling chirality method, the enantiomeric elution order and the absolute 

configuration of some chiral dihydrofurocoumarins were successfully determined. 

3.1. INTRODUCTION 

q /8 

Angel ici n Psoralen 

2 

Fig 1 .The top two structures are Angelicin and Psoralen, which are often found in nature. 
Structure 1 is a substituted dihydroangelicin and structure 2 is a substituted 
dihydropsoralens. R1 and R2 can be various types of aliphatic or aromatic substituents. 
Note, when R1 ?R2, the carbon marked with an asterisk is the stereogenic center. 

The first historically documented use of dihydrofurocoumarins (Figure 1) was in 

ancient Egypt, where dihydrofurocoumarin-rich extracts were used for the treatment of skin 
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disorders such as psoriasis and vitiligo[l-3]. Extensive investigation of this class of 

compounds started in the late 1970s and a variety of useful medical effects were fbund[4-6]. 

Recently, different chiral analogues of dihydrofurocoumarin have been isolated as natural 

products, and shown to be active against a number of diseases[7]. For example, marmesin 

and columbionetin derivatives have been shown to exhibit cytotoxicity against KB cells, to 

inhibit c-AMP (which affects coronary vasodilation) and to mediate the action of 

acetylcholinesterase (which plays a role in Alzheimer's disease)[4-9]. Dihydrofurocoumarin 

compounds appear to be nontoxic[4,10-12]. Clearly, the potential pharmaceutical 

applications of these compounds are promising. However, the pharmacological activity of 

both enantiomers must be assessed. This means that asymmetric synthesis or enantioselective 

separations must be used to prepare the pure enantiomers. Methods for the asymmetric 

synthesis of these compounds are under development, but are proving to be very difficult and 

of low yield[13]. 

A recent report used the palladium-catalyzed annulation of 1,3-dienes by o-

iodoacetoxycoumarins to produced racemic substituted dihydrofurocoumarin (Figure 1) in 

high yields[14]. Effective methods for separating and identifying these synthetic products as 

well as the stereoisomers of related natural products are desperately needed. 

Macrocyclic glycopeptides are one of the fastest growing classes of chiral selectors. Since the 

first introduction as CSPs for HPLC , TLC, and run buffer additive for CE in 1994 by 

Armstrong[15-18], enantiomeric separations of over a thousand different compounds have 

been reported[19]. The structure of the macrocyclic glycopeptides includes many functional 

groups, including aromatic, hydroxyl, amine, carboxylic acid moieties, amide linkages, 

hydrophobic pockets, etc. (Figure 2). A complete description of this family of compounds 
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was given previously 15,18-23]. All possible molecular interactions, including ionic 

interaction, hydrogen bonding, steric, dipole-dipole and Tc-n interactions as well as 

hydrophobic interactions responsible for chiral recognition, are 

Vancomycin Ristocetin A Teicoplanin T-Aglycone 

; 

B MF 
NtiCOCH, >NH 

Fig. 2 These are the Structures of the four macrocyclic antibiotics vancomycin, teicoplanin, ristocetin A, and teicoplanin 

aglycon tested in this study showing a profile view of the aglycon "basket" using (A) space-filling molecular models produced 
through energy minimization and (B) stick figures. The colored atoms in part A denote the hydrophilic moieties, while the black 
portion designates the more hydrophobic regions. Red represents carboxylate groups, green are ammonium groups, and blue are 
hydroxyls. Black regions include the aromatic rings, connecting carbons, and amido linkages, (revised from reference 19) 

available within their relatively compact structures. This class of CSPs is multimodal, which 

means they can be utilized in any of the known mobile phase modes including normal phase, 

reverse phase and polar organic phase modes[15,17-56]. Two of the most common coumarin-

based pharmacologically active compounds are warfarin and coumachlor. Their racemates 

have been separated by a wide variety of CSPs. However, to our knowledge, no 

enantioseparation of chiral dihydrofurocoumarin compounds (Figure 1) have been reported 

on any CSP. In this study, 28 chiral dihydrofurocoumarin derivatives were evaluated. The 
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first part of this work discusses the overall separation performance using different 

macrocyclic glycopeptide CSPs and different mobile phase conditions. Subsequently, the 

effect of analyte structure on the enantioselective separation is discussed. The information 

gleaned from the separation of structurally related compounds using different mobile phases 

and closely related CSPs provides some insight into the chiral recognition mechanism for the 

substituted dihydrofurocoumarins. 
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3.2. EXPERIMENTAL 

All the racemic dihydrofurocoumarin derivatives were synthesized and purified as previously 

reported[14]. The structures of the 28 chiral coumarin derivatives used in this study are given 

in Figure 3. 

l̂ L0X0 

05) (16) (17) <!8> U9) 

B 

(20) 

X o-̂ V -̂o^o 
HO i B I 

(22) 1 (23) 

(24) 05) (26) (27) 
(28) 

Fig. 3 Structures of the chiral furoooumarin derivatives tested in this study. Compounds listed in group A 
are 14 dihydroangelicins, group B are 9 dihydropsoralens, and group C are 5 related different 
dihydrofurocoumarin derivatives. 

The dihydrofurocoumarins shown in Figure 3 can be divided into three structural 

categories. The compounds in the Erst group are dihydroangelicin derivatives. The furan ring 

is fused to the 7, 8 position of the coumarin giving these molecules a "bent" appearance. The 

second group (Figures 1 and 3) is referred to as dihydropsoralens. The furan ring in these 
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compounds is fused to the 6, 7 position of the coumarin giving these molecules a linear 

orientation. The last group of compounds has the furan ring fused to the 5 and 6 positions or 

3 and 4 positions (Figure 3). All 28 dihydrofurocoumarins have stereogenic centers located in 

the furan ring. Note that both compounds 13 and 19 have two stererogenic centers (Figure 3). 

Separations of two pairs of enantiomers were both achieved in these cases. 

3.2.2. OfAer cAem/cak 

HPLC-grade acetonitrile (ACN), methanol (MeOH), 2-propanol (IPA), n-hexane 

(Hex) and were purchased from Fisher (St. Louis, MO, USA) and/or EM (Gibbstown, NJ, 

USA). Ethanol (EtOH), 200 proofs was purchased from AAPER Alcohol and Chemical CO. 

(Shelbyville, KY, USA). Water was deionized and filtered through active charcoal and a 5 

|im filter. Triethylamine (TEA) and acetic acid (AA) were from Sigma (St. Louis, MO, 

USA). 

3.2. J. &PLC aysfem fAg cMra/ 

Separations were achieved on a HP 1050 HPLC system with UV detector, auto 

injector, using a computer controlled Chem-station data processing software. All three CSPs, 

trade named Chirobiotic T, Chirobiotic TAG, and Chirobiotic R columns (250x4.6 mm I.D.) 

were obtained from Advanced Separation Technologies, Inc. (Astec), Whippany, NJ, USA. 

The detailed structures of the chiral selectors used in these CSPs are shown in Fig 2. The 

chiral stationary phases were prepared by bonding the chiral selectors to a 5 pm spherical 

porous silica gel through a linkage chain[15,53]. All separations were repeated at least three 

times with very good reproducibility. Detection wavelengths were varied between 220nm 

and 327 nm, which correspond to the two molecular absorption maxima of the 

dihydrofurocoumarins. The injection volume was 2 |il. Separations were carried out under 
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isocratically at a flow rate of 1 mL/min or 0.5mL/min at room temperature. The mobile phase 

was premixed and degassed under vacuum condition. 

3.24. MoM/e pAase compoaNowg 

Three different mobile phase modes (i.e., normal phase, reversed phase and new polar 

organic modes) were used and compared. In the normal phase mode, n-hexane was used as 

the non-polar solvent and the polar organic modifier was ethanol, which proved to give better 

resolution than using isopropanol as the modifier. In the reversed phase mode, a mixture of 

pure deionized water and methanol was used throughout the study. Aqueous buffer solutions 

of 1% triethylamine (TEA, 0,07M), with pH value 4.1 adjusted by acetic acid, was tried but 

did not produce any significant difference in the separation. Reversed phase separations 

using acetonitrile as the modifier were compared to the separations achieved using methanol 

as the modifier. It was found that using methanol as modifier gave much better selectivity 

and resolution. In the polar organic mode, 100% pure methanol and acetonitrile was used and 

compared. Addition with some acid (acetic acid) and base (TEA) at various ratios to the 

mobile phase was tried but did not produce any improvements in the separations. All the 

reported mobile phase compositions used are not necessarily the optimum conditions for the 

enantiomeric separations, instead, are mobile phase compositions being adjusted to achieve a 

reasonable elution time and selectivity. In this way, direct comparison in the separation of 

this family of compounds can be made. Optimized separations for individual compounds can 

be done easily if the need arises. 

3.2J. Ca/cwfof&WM off&e cAromafogrqp&fc 

The dead volume (to % flow rate) was estimated using the change in refractive index 

caused by different composition of the injection solvent. All other related parameters. 
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Retention factor (t'y ) was calculated using the equation &'/ = where is the 

corresponding retention time for the 6rst eluted enantiomer. The enantioselectivity factor (a) 

was calculated using a = where A: 3 is the retention factor for the second eluted 

enantiomer. The resolution factor (#,) was calculated using the equation x ^ ^ / 

(W/ + where ^2 and are the retention times of the second and first eluted enantiomers 

and w; and wj are the corresponding base peak widths. The efficiency or number of 

theoretical plates (n) was calculated using the equation 

3.3. RESULTS AND DISCUSSION 

3.7. CfuwparzMW: of (Ae /yef/ôrmaMce of f&e fArgg 

See Table 1 at the end of this paper and Figure 4 listed below. 
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Figure 4. This is the summary of separations for individual compounds on different CSPs. The Y axis 
stands for the number of separations achieved using the five different mobile phase modes listed in Table 
1. The X-axis stands for the compound sequence number assigned corresponding to Table land Figure 3. 
The light bar stands for the number of mobile phase modes that resolved ( o>1.01) the corresponding 
compound. The black bar stands for the number of baseline separation (Rs .5) achieved. 

Table 1 and Figure 4 summarize the overall number of observable (a^.02) and baseline (Rs 

enantiomeric separations obtained on each CSPs with the five mobile phases tested. In 

Figure 4, the white bar stands for the number of observable enantioseparations and the black 

bar stands for the number of baseline enantioseparations. As can be seen from Figure 4, the 

Chirobiotic T and TAG CSPs appears to be the most broadly useful for separating 

enantiomers of dihydrofurocoumarin-based compounds. The teicoplanin CSP resolved 

enantiomers of the entire set of 28 compounds with 24 of them being baseline separated. The 

teicoplanin aglycon CSP resolved the enantiomers of 26 compounds with 23 of them 

baseline. These two closely related CSPs showed similar selectivities for most of the 

compounds, however, there are some slight differences. Dihydropsoralens, which have a 
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"straight shape structure" (Figure 3) tend to be better resolved on the teicoplanin based CSP 

(Table 1). This indicates the importance of the sugar units on teicoplanin in the chiral 

discrimination of these compounds. The teicoplanin aglycon (TAG) CSP showed better 

selectivities for dihydroangelicins and other "bent-shaped" molecules (Table 1) using the 

same mobile phase conditions. This in turn implies that the steric effect of the bulky sugar 

units on the teicoplanin CSP decreases chiral recognition for some of these compounds. This 

effect was discussed in a previous paper[53]. Neither the Chirobiotic T nor the TAG CSPs 

could baseline resolve compounds 16, 26 and 27 (Table 1, Figure 3). However, all of these 

compounds were baseline separated on the ristocetin A CSP (i.e., Chirobiotic R), which 

baseline separated 14 out of the 28 compounds. The ristocetin A CSP shows extremely good 

selectivity toward most of the third group of compounds (Figure 3), some of which 

(compounds 26 and 27) did not separate very well on either the teicoplanin or teicoplanin 

aglycon CSPs. Compounds that could not be separated on the Chirobiotic R column were all 

baseline resolved on either or both the T and TAG columns. This demonstrates the 

complementary nature of these CSPs which was demonstrated in previous studies [29]. The 

principle of complementary separation says that if a partial enantiomeric separation is 

obtained with one glycopeptide based CSP, there is a strong probability that a baseline or 

better separation can be obtained with a related macrocyclic glycopeptide CSP using the 

same or similar mobile phase conditions. This allows for improved resolution by simply 

switching to a related Chirobiotic column. Figure 5 illustrates the complementary nature of 

the Chirobiotic TAG and R columns for the separation of compounds 1 and 22. As can be 

seen, compound 22 was not baseline separated on the Chirobiotic TAG column in the RP 

mode, but was well separated on the related Chirobiotic R column in the same mobile phase 
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condition. Conversely, compound 1 was well separated with the Chirobiotic TAG column in 

the NP mode, but not with the Chirobiotic R column. 

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 

Figure 5. This figure shows the complementary nature. Figure A shows the separation of compound 22 using the 
Chirobiotic R versus Chirobiotic TAG in reversed phase mode( H20: MeOH/60:40,1ml/min). Figure B shows 
comparison of the separation for compound 1 using the same two columns in normal phase mode(Hexane:EtOH/95/5, 
1 ml/min). It is obvious that the two columns complementary to each other for the separation of these two compounds. 

3.2 Ejgyèc# of woAik/p&ose modes 

It is well known that CSPs based on macrocyclic glycopeptides are multimodal, 

which means they can be used in any mobile phase mode and can achieve different 

separations in each mode[15,56]. This can be very advantageous since the chiral recognition 

mechanisms in different separation modes are different and this allows the CSP to separate a 

greater variety of chiral analytes. Compounds that do not separate in one chromatographic 

mode are often easily separated in another mode on the same CSP. Fig 6 summarizes the 

number of baseline separations achieved on the three CSPs in different mobile phase modes, 
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i.e., the normal phase mode (NP), reversed phase mode (RP) and polar organic mode (PO). 

Clearly the normal phase mode with hexane/ethanol is the most effective approach for 

separating substituted dihydrofurocoumarins when using teicoplanin and teicoplanin aglycon 

CSPs. The teicoplanin (T) and teicoplanin aglycon (TAG) CSPs baseline separated 23 and 21 

compounds respectively using this single mobile phase. Teicoplanin (T) is the most effective 

chiral selector with all mobile phases except 100% methanol. The ristocetin A CSP was less 

effective for the chiral dihydrofurocoumarins regardless of the mobile phase conditions. In 

the reversed phase mode (RP), all three CSPs were less effective but they separated similar 

numbers of compounds. In the polar organic mode (PO), however, both the teicoplanin and 

teicoplanin aglycon again showed much better selectivity compared to the ristocetin A CSP 

(Figure 6). 
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Hex:EtOH H20:Me0H IPA EtOH MeOH 

Mobile phase composition 

Fig. 6 This bar figure summarizes the number of baseline separations (after optimization) achieved using 
different mobile phase modes) i.e. NP, RP, and PO modes) on Chirobiotic R (R), Chirobiotic T (T) and 
Chirobiotic TAG (TAG) columns. 

3.2.7 MfrmaZ mode fqpana&w: 

More and better enantioseparations of the dihydrofurocoumarins were achieved in the 

normal phase mode than in other chromatographic modes. In the normal phase mode, the 

CSP behaves as a polar stationary phase. The strongly polar functional groups and aromatic 

rings of the CSP provide the interactions needed for both retention and chiral recognition. In 

normal phase HPLC, retention is controlled by adjusting the percentage of a polar organic 

modifier such as ethanol or propanol. 
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Fig. 7 Effect of Mobile Phase Modifier on retention, selectivity and resolution factors 
Figure A shows the resolution factor changes with the mobile phase becomes less polar. Y axis is in the unit of resolution factor 
and X axis is the discrete mobile phase composition. Figure B shows the selectivity factor and resolution factor changes with 
the mobile phase composition changes. It can be seen in Figure A that compounds 4 and 5 shows different trend compare to 
compounds S and 14 when the mobile phase becomes less polar. 

Figure 7 shows the effect of added organic modifier on the retention, selectivity, as well as 

the resolution factors for selected compounds in the normal phase mode on the TAG CSP. In 

Figure 7 A and 7B, the x-axis represents the mobile phase compositions starting with the most 

polar solvent (100% methanol) and extending to the most nonpolar solvent mixture (i.e. 90% 

hexane + 10% ethanol by volume). The Y axis in Figure 7(A) represents resolution factor Rs, 

and that in Figure 7(B) represents retention factor, kr, and enantioselectivity factor, a, for 

compounds 4, 5, 6, and 14. The TAG CSP showed a very typical normal phase behavior. 

When the mobile phase becomes less polar, the retention increases, however, the selectivity 

factor stays almost constant (Figure 7(B)). Nevertheless, increasing the retention does not 

necessarily increase the enantiomeric resolution. As can be seen from Figure 7(A), improved 
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resolutions were achieved tor compounds 4 and 5 by simply decreasing the polarity of the 

mobile phase. Most of the compounds in Table 1 behaved in this way. In contrast, some of 

the dihydrofurocoumarin compounds (such as compounds 6 and 14) behaved in just the 

opposite way (Figure 7(A)). 

Hep/EtOH=50/50 Rs=4.62 

n,=1397 

n2=177 

14.40 

Hep/IPA=50/50 

Fig. 8. Comparison of separations of compound 22 using ethanol and 
isopropanol as modifiers in the NP mode on Chirobiotic R Column. Figure 
A was obtained using heptane/ethanol=50/50, Figure B was obtained using 
heptane/isopropanol=50/50(v/v). Both use flow rate at 1ml/min. 

Ethanol was selected as the organic modifier of choice since it produced improved 

enantioresolutions for the entire set of compounds in the normal phase mode. Figure 8 is a 

comparison of separations of compound 22 using ethanol and isopropanol (50% in heptane 

by volume) as modifiers on the ristocetin A CSP. As can be seen from these two 

chromatograms, the selectivity factors are very similar (3.42 and 3.85 using ethanol and 

isopropanol respectively), but the resolution factors are much different (4.62 and 1.64 
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respectively). The efficiency (n, number of theoretical plates) for peak 1 are 1397 and 102 

using ethanol versus isopropanol, respectively. Using ethanol as the organic modifier 

improved the separation efficiency of all compounds separated. For convenience, Table 2 

lists all the related solvent properties. As can be seen from Table 2, the biggest difference in 

properties between ethanol and isopropanol is viscosity. Isopropanol is about twice as 

viscous as ethanol. Viscosity contributes to the band broadening by two mass transfer terms 

found in the van Deemter equation, one is the mobile phase mass transfer term, and the other 

is the stagnant mobile phase mass transfer term. However, poor stationary phase mass 

transfer may be the most important factor affecting band broadening when using isopropanol 

versus ethanol as modifiers in the normal phase mode. Ethanol more effectively competes 

with the analyte for strong adsorption sites on the CSP. It also has a greater elutropic strength 

in the normal phase mode than does propanol. This accounts for the shorter retention times 

obtained for all of these analytes when ethanol is used as a modifier. 

The Ristocetin A CSP is extremely selective for the compounds of the third group in 

Figure 3 (miscellaneous dihydrofurocoumarins) in the normal phase mode. Additionally, 

compound 22, a dihydropsoralen, is well separated by the R CSP. Few other baseline 

separations were observed on this CSP in the NP mode. 
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Table 2. 
solvents Boiling 

point 
Dipole 
moment 

Dielectric 
constant 

Viscosity 
(cPat20°C) 

Polarity index 
(Snyder) 

Hydrogen 
bonding^) 

Water 100.0 | 1.85 78.54 1.00 10.2 (9) 2D + 2A 
Methanol 64.7 1.7 32.70 0.6 5.1 (6.6) 1D + 2A 
Ethanol 78.3 1.69 24.55 1.2 (5.2) 1D + 2A 
Isopropanol 82.26 1.66 19.92 2.4 3.9 (4.3) 1D + 2A 
Acetonitrile 81.6 3.92 37.50 0.37 5.8 (6.2) ID 
n-Hexane 68.7 0 1.89 0.31 0.1 (0) -

n-Heptane 98.4 0 0.0 0.4 0.1 -

Data were obtained from 
1) LC-GC INT. vol. 8, No. 4, page 190-195, April 1995, by Cynthia Seaver and James 

Przybytek. "LC troubleshooting, solvent section, Part II-Physical properties. 
2) "Burdick & Jackson Solvent Guide; Third Edition." Burdick & Jackson (Muskegon, 

Michigan, USA. 1990. 
3) Eastman Organic Chemical Bulletin, vol. 47, No. 1,1975 by R. L. Schneider. 

"Physical properties of some organic solvents". 
* D stands for H-bond donor and A stands for H-bond acceptor 

3.2.2 ^Reversed pAase mode appBcadons 

The reversed phase mode (RP) is not as effective as the normal phase mode (NP) for 

the separation of this class of compounds with teicoplanin based CSPs. Interestingly, the 

ristocetin A CSP separated the great number of compounds in this mode. In fact, the best 

separation, with a resolution factor of 9.05 for compound 28 was achieved in the reversed 

phase mode using the Chirobiotic R column. Hydrophobic interactions are believed to be one 

of the most important intermolecular interactions between this class of CSPs and these 

analytes in the reversed phase mode [15]. Compounds 11, 14, 21 and 23 (with one or more 

than one aromatic groups attached directly or indirectly to the stereogenic center) are the 

most hydrophobic compounds in this study. Note the large k/ of 53 for compound 23 (Table 

1) when a mobile phase of 50/50, methanol/water was used. The strong hydrophobic 

interactions for compounds 11, 14 and 23 did improve their enantioselectivity. But for 
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compound 21, which is a dihydropsoralen, the strong hydrophobic interaction, indicated a 

large k% ' of 29 on the TAG CSP, but no enantioselectivity was observed tor this compound in 

the reversed phase mode. This means that the hydrophobic interactions between this analyte 

and the CSP in the reversed phase mode do not contribute to chiral recognition as they do for 

compounds 11,14 and 23. Clearly, some hydrophobic interactions contribute to nonselective 

retention, as for compound 21. If retention is dominated by nonselective hydrophobic 

interactions between the analytes and the CSP, these dominant interactions reduce the access 

of the analyte to favorable chiral recognition sites. 

While baseline enantiomeric separations occurred more frequently in the NP mode, 

there are a few cases where a baseline separation of enantiomers was only achieved in the RP 

mode (compounds 6, 9, 11, and 12) when using macrocyclic glycopeptide CSPs. This is 

probably due to steric effects as will be discussed in the following section 3.4.2. 

JVew jw&zr wygMfc mode sgwzrefwwM 

The new polar-organic mode is a modification of the polar organic mode that was 

originally developed for chiral separations with cyclodextrin bonded phases[57,58]. 

Generally, the main solvent component in the new polar-organic mobile phase is an alcohol 

(e.g., methanol, ethanol, or isopropanol) with a very small amount of acid/base added to 

affect retention and selectivity. The retention time can also be adjusted by adding 

acetonitrile. Figure 6 shows that the teicoplanin and teicoplanin aglycon CSPs separated the 

largest number of dihydrofurocoumarins using this simple mobile phase mode (100% 

alcohol). The ristocetin A CSP separated fewer of these compounds in the polar organic 

mode. It was noted that optimization of the mobile phase by adjusting the acid to base ratio 

did not improve enantioselectivity in the PO mode. This indicates that ionic interactions do 
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not play a role in the chiral recognition of these neutral molecules in this mode. Instead, 

dipole-dipole, H-bonding, ir-% interactions and steric effects (or some combination thereof) 

are the main driving forces for chiral recognition. 

Note that the selectivity factors for the separations of all dihydrofurocoumarin 

compounds using MeOH, EtOH and IP A are quite similar (Table 1), while the resolution and 

retention factors are very different. Narrower and sharper peaks were always obtained for the 

separations using EtOH or MeOH as mobile phases as compared to IP A. As can be seen from 

Table 2, this may be caused by the higher viscosity of isopropanol. 

When one compares the separations achieved using pure methanol and pure ethanol, 

an interesting observation was made (Figure 7 and Table 1). When a better separation of 

enantiomers (enantioresolution factor (Rs) and enantioselectivity factor (a)) was achieved 

using pure methanol (compared to pure ethanol), it was found that the reversed phase mode 

was better than the normal phase mode for separating these enantiomers. This is true for 

compounds 6,14, and 24. When a better separation of enantiomers was achieved using pure 

ethanol (compared to methanol), then the normal phase mode was more effective than the 

reversed phase mode in separating these enantiomers. This is true for most of the remainder 

compounds. When pure methanol produced results that were approximately equal to those 

obtained while using pure ethanol, both the NP and the RP modes were found to work well. 

These observations hold true for the Chirobiotic T and TAG CSPs when analyzing the 

dihydrofurocoumarin derivatives shown in Fig. 3. This observation may be useful in 

choosing a mode of separation (the RP or NP mode) for the teicoplanin and teicoplanin 

aglycon CSPs. Unfortunately, the results from the Chirobiotic R CSP do not follow a 

discernable trend. 
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3.3 JWe of Aydroggw Aondfwg cAfro/ dMcr«wf»a^oM 

In the polar organic mode, when the pure alcohol mobile phase was mixed with 

acetonitrile, the number of separations was significantly decreased for the 

dihydrofurocoumarins. In fact, when using 100% acetonitrile as mobile phase, no separations 

were achieved on any CSPs for the entire set of analytes even though analyte retention was 

similar to that found with methanol. One can note from Table 2 that the polarity of 

acetonitrile is very similar to that of methanol. However, acetonitrile is a dipolar aprotic 

solvent, while all the alcohols are polar protic solvents. Therefore, the hydrogen bonding 

acidity (i.e. the ability to donate a H-bond) of acetonitrile is small, while the alcohols are 

both hydrogen-bond donor and acceptors (Table 2). This taken together with the fact that no 

separations were observed when using pure acetonitrile as mobile phase, support the 

contention that the hydrogen bonding between the mobile phase molecules and the analyte or 

the CSP plays a role in chiral recognition in the polar organic mode. 

When the separations of compounds 16 and 22 are compared using the teicoplanin 

and teicoplanin aglycon CSPs in 100% ethanol, the effect of hydrogen bonding is obvious 

(Figure 9). With a hydroxyl group attached to the carbon next to the stereogenic center, 

compound 22 was separated on all CSPs with high selectivity and resolution in any of the 

pure alcohol mobile phases (Figure 9, Table 1 and Fig 4). However, removing this hydroxyl 

group produces compound 16, which cannot be separated on any CSP in the PO mode 

(Figure 9, Table 1 and Fig 4). In the normal phase mode, the separation of compound 22 was 

much improved compare to compound 16 on all CSPs examined (Table 1, Figure 8). This 

illustrates the additional benefits of hydrogen bonding between the analyte and the chiral 

selector for chiral recognition in normal phase mode. 
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Chirobiotic T Chirobiotic TAG 

Fig. 9 Effect of hydrogen bonding ability of the analytes on chiral recognition in the polar organic mode 
Figure A was obtained on Chirobiotic T column and Figure B was obtained on Chirobiotic TAG column using 
100% ethanol, flow rate 1 mi/min. 

In the reversed phase mode, however, the hydrogen bonding ability of the aqueous 

mobile phase is too strong. The hydrogen bonding interaction between the analytes and the 

CSP is much less pronounced in the reversed phase mode (RP) where the hydrophobic 

interactions predominate. Separations of compound 22 were greatly diminished on the 

teicoplanin and teicoplanin aglycon CSPs in the RP mode. This is likely due to the H-

bonding sites on the chiral selector being preferentially associated with interactions from the 

mobile phase molecules. Therefore, one can conclude that hydrogen bonding between the 

hydroxyl group on the analyte and the hydrogen bonding groups on the CSP in PO mode as 

well as in NP mode is a one of the key interactions leads to chiral recognition. 
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The hydrogen bonding groups on the CSPs leading to chiral recognition for the 

enantioseparation of the dihydrofurocoumarins may be the hydroxyl groups on the rim of the 

aglycon. In general, teicoplanin and teicoplanin aglycon CSPs show very similar 

enantioselectivity for separation of chiral dihydrofurocoumarins. Therefore, the aglycon 

portion of teicoplanin must play the key role in chiral recognition. In addition, when the 

separations using teicoplanin aglycon (TAG) and methylated TAG (where the hydroxyl 

groups on the rim of the aglycon have been methylated) was compared in the normal phase 

and the PO mode, far fewer separations of these analytes were fbund[59]. This indicates the 

importance of the hydroxyl groups on the CSPs and it supports the presence of a 

stereoselective hydrogen bonding interaction (probably with the oxygen of the dihydrofuran 

ring) in the normal phase and polar organic modes. 

3.4 fo f&e fwz&fre of fAe fadMAfg/ coa*po*w:ds 

3.4.7 GeomeAy of fAe dfAydro/Mrocowmgnhs 

As discussed in section 3.2, dihydroangelicins, dihydropsoralens, and the third group 

of analogues (Figure 3) have different enantioselectivities on different CSPs. It was also 

observed that the orientation of the furan oxygen in relation to the coumarin effects the chiral 

separation. Fig 10 shows the chromatograms of compounds 1, 24, 25 and 28 obtained on the 

Chirobiotic T and Ristocetin A columns in the RP mode. The only difference for these 

analytes is the positional substitution of the furan ring on the coumarin body. Note that the 

only difference between compound 24 and 25 is the opposite location of the ether linkage. It 

can be seen from the chromatograms that the best separations for the 7, 8 substituted 

dihydrofurocoumarins (Figure 1) were achieved on the Chirobiotic T and TAG columns (i.e. 

compound 1), while the other kinds of substituted dihydrofurocoumarins (i.e., 5, 6 substituted 
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and 6, 7 substituted, Figure 1) were better separated on the Chirobiotic R column (i.e. 

compounds 24, 25, and 28). Another series of examples, which showed the exact same 

effects, are compounds 4,16, 26, and 27 (Table 1, Figure 3). 

Chirobiotic T Chirobiotic R 

Figure 10. Effects of molecular special orientation. Figure A, B, C, and D list the comparison of separations achieved on 
Chirobiotic T and R columns in RP mode (H20:Me0H=65:35) for compounds 1, 23, 24, and 27 respectively, 1 ml/min. 

3.4.2 Jierzc 

Steric repulsive effects are important interactions responsible for chiral recognition in 

any mobile phase mode for this class of compounds. Steric effects in the normal phase mode 

were found to produce results which were contrary to the trends observed in the reversed 

phase mode. Steric bulk in positions a or # to the stereogenic center can either enhance or 

diminish the enantioselectivity. 
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In the normal phase mode, there are four dihydroangelicins (compounds 6, 9,11, and 

12) that were not well separated on the teicoplanin and teicoplanin aglycon (TAG) CSPs. 

They have in common smaller substituents attached to the stereogenic center compared to 

many of the other dihydroangelicins (compounds 4, 7, and 8 for example). Many of the well 

resolved dihydroangelicins have methyl groups as one of the substituents. However, 

compounds 6, 9, 11, and 12 have hydrogen atoms instead. Conversely, many of the 

compounds in the second group of Figure 3 (dihydropsoralens) are better separated into 

enantiomers when a hydrogen atom is present as one of substituents on the stereogenic center 

(compounds 15, 17, and 18 versus compound 16). An exception to this is compound 22, 

which may interact with the CSP quite differently from the rest of compounds due to the 

hydroxyl group attached alpha to the stereogenic center. 

In the reversed phase mode, compounds 6,9,11, and 12 (which have less bulk around 

the stereogenic center) were all separated better than compounds 4, 7, and 8; which is the 

opposite trend found in the normal phase mode. This indicates that the steric repulsive 

interactions between the analyte and the CSP in the reversed phase mode play a negative role 

in chiral discrimination of dihydroangelicins, while the steric effects play a positive role for 

the same compounds in the NP mode. Similarly, for dihydropsoralens (in Figure 3), the steric 

bulk (compound 16) did improve the enantioselectivity with ristocetin A and teicoplanin 

aglycon CSPs. Therefore, the steric effects in the RP mode behave in just the opposite way as 

that seen in the NP mode for the enantiomeric separation of dihydrofurocoumarins. 
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NP 

0 5 10 15 
0 5 10 15 20 25 30 

Fig. 11 Comparison of the role of steric effects for enantioseparations on the Chirobiotic T column using the 
NP versus the RP mode. Figure A is a pair of chromatograms obtained in the NP mode (NP =Hexane: 
EtOH=95/5), 1ml/min. Figure B is a pair of chromatograms obtained in the RP mode (RP=H2O:MeOH=60/40), 
1 mi/min. Clearly, steric effects generate by the extra methyl group of compound 7 in the position alpha to the 
stereogenic center just play an opposite role in the NP mode versus in the RP. 

Fig 11 shows the comparison of the enantioseparations of compounds 6 and 7. The 

opposite role of steric effects for enantioseparations in the NP mode and the RP mode 

achieved on the Chirobiotic T column are shown in this figure. The only difference between 

these two compounds is that compound 7 has an extra methyl group connected directly to the 

stereogenic center, which greatly enhanced the enantioselectivity in the NP mode. However, 

in the RP mode, the extra methyl group on compound 7 significantly diminished the 

enantioselectivity. The exactly same behavior can also be found for another pair of 

compounds 4 and 12 (Table I). 

3. J cow^gMro/zow deferfMi»adMm awd gfwzaf&WMerfc e&fdof: order 
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Absolute configuration of the separated enantiomers for selected 

dihydrofurocoumarin derivatives was determined using exciton coupling chirality method[8]. 

It was shown that, the first eluted peak on the Chirobiotic T column in the NP mode for 

compounds 4 and 11 had the R configuration. The Erst eluted peak of compound 8 on the 

Chirobiotic R column in the RP mode has the S configuration]^]. This work is on-going. 

3.4. Conclusions 

The macrocyclic glycopeptides CSPs proved to be extremely selective for the 

enantiomeric resolution of a series of newly synthesized, biologically active chiral 

dihydrofurocoumarin derivatives. The teicoplanin and teicoplanin aglycon CSPs were most 

effective for the enantioseparation of this class of compounds. The ristocetin A CSP 

separated fewer overall compounds, but produced the best separations for those 

dihydrofurocoumarins that were not easily separated on the teicoplanin based CSPs. The 

normal phase mode is the most effective and useful separation mode for all of these CSPs. 

Hydrogen bonding was believed to play a key role in the normal phase and the polar organic 

mode chiral separations. Hydroxyl groups on the rim of the aglycon portion of all CSPs are 

responsible for hydrogen bonding interactions with the analyte. A hydroxyl group on the 

analyte near the stereogenic center greatly enhanced the enantioselectivity on all CSPs in all 

mobile phase modes. Hydrophobic interactions are important in the RP mode. 

Dihydroangelicins, dihydropsoralens, and a related third group of dihydrofurocoumarins 

(Figure 3) behave very differently with regard to enantioselectivity on the different CSPs. 

Steric repulsive effects are very important for achieving chiral recognition on all three CSPs, 

and in both the NP and RP modes. However, the steric bulk near the chiral center of the 
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dihydroangelicin tends to enhance the NP enantiomeric separations and inhibit the 

corresponding RP reparations. The exact opposite trend is seen for dihydropsoralens. The 

absolute configuration of selected, collected enantiomers was determined and therefore the 

enantiomeric elution orders for these particular compounds on a particular CSP under 

specific mobile phase condition were determined. 
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Table 1 
Chromatographic results obtained with chiral dihydrofurocoumarin derivatives on three 
macrocyclic antibiotic CSPs. 

Compound 
number" 
mobile phase'' k, 

'Istocetln A 

alpha Rs 

teicoplanin 

k, alpha Rs kt 

teicoplanin 
aglycone 

alpha Rs 
1 
N P  Hep-EtOH 6.69 1 .  0 3  0 5 5 . 1 3  1  .  1 5  1  9 3  3 . 4 8  1  35 4 .  2 3  

R P  H g O - M e O H  5 5 7  1 .  0 3  0 4 5  4  . 3 5  1  .  0 8  0 .  9 5  7 . 4 1  1  1 3  1  .  5 

PO I  PA 0 6 8  1 . 1 4  0 5 6  0 . 6 7  1  . 3 4  1 .  4 1  . 3 6  1  6 2  1 .  9 3  

PO E t O H  0 2 8  1.11 0 5 5  0 . 2 1  1  . 2 7  1 .  3 2  0 . 6 2  1  4 1  2 .  8 4  

PO 

2 
NP 

M e O H  0 1 6  1  0 0 . 1  1 .  1 4  0 .  2 0 . 4 6  l  3 4  2  .  9 1  PO 

2 
NP Hep-EtOH 5 6 8  1 . 0 8  1 1 2  4 . 3 5  1  . 2 5  3 .  5 3  3 . 0 9  1  4 9  5 .  2 7  

RP H g O - M e O H  7 8 9  1  0 1 0 . 6 4  1 . 0 9  1  4 8  1 4  . 0 1  1 15 1 .  5 1  

P O  I  P A  0 55 1.  3 1 .  0 5  0 . 5 6  1  . 6 2  2 0 1  1  .  1 6  1 8 9  2 .  37 

P O  E t O H  0  2 3  1 . 2 6  1.  0 6  0 . 1 8  1 . 4 9  1 6 5  0  . 5 6  l  6 1  3 .  6 8  

P O  MeOH 0  15 1  0 0  . 1  1 .27 0 6 3  0 . 4 7  l  .4 3 .  27 

N P  H e p - E t O H  5 12 1 .  0 8  1 .  2 4  .  0 5  1 . 1 6  2 4 5  2 .  8 4  1 33 3 .  7 1  

RP H g O - M e O H  1 1 . 9  1 0 1 7 . 2 0  1 . 0 2  0 6 1  2 0  . 4 3  1 0 6  0 .  5 5  

P O  I  P A  0 51 1 . 2 9  0 .  8 7  0 . 5 1  1 . 4 5  1 5 1  .  13 1  5 3  1 .  5 1  

P O  EtOH 0 2 2  1 . 2 3  0 .  8 0 . 1 7  1 . 2 4  0 8 8  0 . 5 8  1 3 4  2 .  0 7  

P O  M e O H  0 1 5  1 0 0 .1  1 0 0 . 5 2  l  11 1 . 0 

N P  H e p - E t O H  5 8 3  1 0 5 . 1 3  1 .  1 1 6 1  3 . 4 3  1 13 1 7 9  

RP H g O - M e O H  6 0 4  1 0 5 . 4 3  1 .  0 3  0 4 6 7 .  9 6  1 0 

P O  I  P A  0 8 7  1 0 1 . 1 1  1 . 2 3  1.  2 4  1 . 8 4  1 17 0 6 

P O  EtOH 0 31 1  0 0 . 2 9  1 .  1 5  0 . 6 9  0 .  7 1  .  1 0 7 6  

P O  M e O H  0 11 1 0 0  . 1  1 0 0 . 4 2  1 0 

N P  Hep - EtOH 7 76 1 . 0 7  0 .  8 7 . 2 7  1 .  1 8  2 3 2  4 . 4 3  1 1 2  1 5 8  

RP H g O - M e O H  7 11 1 0 6  .  9 6  1 0 1 0  . 5 7  1 0 

P O  I  P A  0 .  8 9  1 . 1 2  0.  4 6  1 . 2 3  1 . 3 1  1.  4 2  2 . 0 7  l  1 5  0 5 5  

P O  E t O H  0 .  3 1  1 . 1 7  0 .  6 7  0 . 3 2  1 . 2 1  1. 3 5  0 . 7 9  1 .  1 0 7 6  

P O  M e O H  0 . 1 4  1 0 0 . 1 2  1 0 0 . 5 1  1 0 5  0 5 

N P  Hep-EtOH 7 .  3 6  1 0 7 . 4 7  1 0 4 . 3 8  1 0 4  0.  5 6  

R P  H g O - M e O H  7 .  1 3  1.  15 1.  5 6 . 2 5  1 . 2 7  2 .  7 4  9 . 3 9  l  . 2  1.  9 5  

P O  I  P A  0 . 9 4  1 0 1 . 2 9  1 0 2 .  1 5  1 0 

P O  E t O H  0 .  3 2  1 . 1 0 . 3 0 . 3 5  1 0 0 . 7 6  l  1 4  1 0 1  

P O  M e O H  0 . 1 4  1 0 0 . 1 1  1 . 2 2  0 .  6 5  0 . 4 9  1 1 7  1 5 

N P  Hep-EtOH 4 .  8 8  1 .  0 3  0 .  2 4.48 1 1 8  2 .  6 8  2 .  7 6  1 1 8  2 1 5  

R P  H s O - M e O H  7 .  31 1 .  0 3  0 . 3 6 . 2  1 0 4  0.  4 6  9  . 4 3  1 0 

P O  I  P A  0 .  72 1  0 0 . 8 8  1 . 3 9  1. 6 2  1 . 5  l  .  2 0 6 3  

P O  E t O H  0 . 2 4  1 . 1 3  0 .  4 5  0 . 2 3  1 3 3  1 .  45 0 . 5 8  l  17 1  5 

P O  M e O H  0 . 1 1 0 0  . 1  1 0 0 . 3 9  1 0 8  0 6 
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Compound 
number* 
mobile phase'' 

Ml 

k ,  

stocetin A 

alpha Rs 

teicoplanin 

k, alpha Rs k,  

teicoplanin 
aglycone 

alpha Rs 

8 
N P  H e p - E t O H  6 .  0 7  l  0 5.96 1 .  0 5  1  4 2  3  . 7 3  1 . 0 6  0.  8 4  

R P  H z O - M e O H  5.  8 1  l .  l  2 5  5  . 2 1  1 . 1 1  1 .  4 2  7 . 8 9  1 .  0 8  0.  6 4  

P O  I P A  0.  7 8  l  0  1  . 2 4  1 . 1 3  0  .  6 1  2  . 0 4  1  0  

P O  E t O H  c  .  3  l  0 0 . 3 2  1 . 0 6  0  .  4  0  . 7 3  1  0 

P O  
9  

N P  

M e O H  0.  1 1  1  0 0 . 1  1  0  0  .  4 6  1  0  P O  
9  

N P  H e p - E t O H  7 .  1 4  1 .  0 2  0.  2  6.78 1 . 1 2  0 .  73 4 . 2 6  1 . 0 5  1 .  3 3  

R P  H ] Q - M e O H  7 .  47 1 .  1 4  1.  5 5  7 .  1  1 . 0 7  0 .  7 3  10 . 5 7  1 . 0 6  0 .  6 

P O  IPA 0 .  8 2  1.  11 0 .  4 3  1.  1  1 . 2 3  1 .  1 2  1 . 8 9  1.1 0  .  2  

P O  E t O H  0 .  2 9  1 . 0  9  0 .  5  0 . 2 9  1.1 0  .  5 6  0  .74 1  0 

P O  M e O H  0 .  1 3  1 0 0 .  1  1  0  0 . 4 8  1  0  

10 
N P  Hep-EtOH 4 .  4 1  1 .  0 6  0  .  7 4.48 1 . 0 9  1 .  5 2  2  . 2 4  1 . 1 2  1 .  6 5  

RP H z O - M e O H  1 1  .  1  1 .  0 7  0 .  5 9  l l  .  13 1 . 0 7  0 .  6 7  1 6  .  57 1 . 1 0 .  8 5  

P O  I P A  0 .  5 9  1  0 0  .  8 1  1 . 2  0  .  8 8  1 . 3 2  1 . 2 7  0 .  7 6  

P O  EtOH 0 .  2  1 . 1  0 .  4 1  0 . 2  1 . 2 4  1.  2  0  . 5 3  1 . 2 3  1 .  4 

P O  MeOH 0 .  1 1 0 0  . 1  1 0  0 . 3 8  1 . 1 3  0 .  7 6  

11 
N P  Hep-EtOH 14 .  14 1 .  0 4  0  .  2  1 3  . 9  1 .  0 7  1 .  0 2  8  . 5 8  1 .  0 3  0 .  5 3  

R P  H20-Me0H 1 9 .  00 1 . 2 2  2 .  16 17 .  75 1 .  0 6  0  .  9 5  27 . 7 5  1.  15 1 .  5 

P O  I P A  1 .  2 8  1 . 1 2  0 .  5 1  .  8 6  1 . 1  0 4 7  3  . 5 8  1  0 

P O  E t O H  0 .  4 3  1  0 0 . 4 7  1  0 1  . 2 2  1  0 

P O  M e O H  0 .  1 9  1 0 0 .  1 9  1  0 0 .  8 1  1  0 

12 
N P  H e p - E t O H  7 .  3 6  1  0  7 .  6 5  1  0 4 .  8 9  1 0 

R P  H ] 0 - M e 0 H  5.  8 6  1 .  0 7  0 .  9 5  5 .  0 4  1 . 2 8  2 .  6 9  7 . 6 1  1 . 1 8  1 .  77 

P O  IPA 1 .  0 3  1 0  1  . 3 5  1  0 2 .  1 8  1 0  

P O  EtOH 0 .  3 8  1 0 0 . 3 7  1  0  0  . 7 6  1 . 1  0  

P O  M e O H  0  .  15 1  0 0  .  11 1  0  0 . 4 8  1 . 1 5  0 

1 3  
N P  Hep-EtOH 4  .  13 1 .  0 7  0  .  8  3 . 2 3  1 .17 2 6 1  2  .  0 7  1 .  3  8  4 .  8 8  

5 .  0 8  1 .  0 7  1 .  0 4  .  0 3  1 . 2 4  3 37 2  . 5 2  1 . 4  9  6 .  3 5  

R P  H ^ O - M e O H  4 .  9 5  1  0  3 

4 

.  9 4  

.  1 6  

1  

1  

0 

0 

6 

7 

. 3 9  

. 2 9  

1  

1  

0 

0  

P O  IPA 0 .  4 6  1  0 0 . 3 6  1 . 5 6  1  4 0  .  8  1 . 6 2  2  4  

0  .  5 6  1  0 0  . 4 2  1 . 7 5  2 0 . 8 6  2  .  0 8  2  5 

P O  E t O H  0 .  1 7  1  0 0  . 1  1 . 3  0  .  5 0 .  3 3  1 . 5 8  2 3 5  

0  .  2 1  1 0  0  .  1 1  1 . 6 4  1 .  5 0  .  3 7  1 .  6 7  2 9 2  

P O  MeOH 0  .  1  1 0  0 .  0 5  1  0 0 . 2 3  1 . 5 1  2 6 

0  .  0 7  1  0  0  . 2 6  1 . 5 3  2 6 
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Compound 
number* 
mobile phase" 

ristocetin A 

ki alpha Rs 

teicoplanin 

k, alpha Rs 

teicoplanin 
aglycone 

ki alpha Rs 
14 
N P  

R P  

P O  

P O  

P O  

15 
N P  
R P  
P O  
P O  
P O  
16 

Hep-EtOH 8  3 5  

O
 

H
 0  8  7.07 1  2 1  3  0 7  4 . 2 7  1  . 0 9  1  2 4  

HzO-MeOH 2 4  6 2  1 . 1 2  1  2  4 2 . 9 4  1  1 9  1  88 4 9 . 0  1  . 2 1  1  5 5  

IPA 0  9 5  1  0  1 . 0 4  1  2 9  1  3  2 . 0 8  1  0  

EtOH 0  3 1  1 . 1  0  5 2  0 . 2  8  1  3 2  1  5 4  0 . 7 5  1  . 1 2  0  6 7  

MeOH 0  1 4  1  0  0 . 1 1  1  3 6  1  1 2  0 . 5 8  1  1 7  1  5  

Hep-EtOH 11.0 1 .  0  .  , 3  8.38 1  .  1 1  1 .  4  .  . 5 3  1 . 0 9  1  

HgO-MeOH 9 . 2 7  1 .  0  .  . 4 1  7 . 5 9  1  0  1 0  ,  .  9 3  1  0  

IPA 0 . 7 7  1  0  0 . 7 7  1  . 2 1  0  .  1 .  . 4 2  1 . 1  0  

EtOH 0 . 3 2  1  0  0 . 2  1  .  1 2  0  .  0  .  . 5 9  1 . 0 9  0  

MeOH 0 . 1 5  1  0  0 . 1  1  0  0 .  . 4 4  1  0  

N P  Hep-EtOH 8 . 4 5  1 .  0  3  6.88 1 .  0 2  0  .  3  8 7  1  0  

R P  HgO-MeOH 1 0 . 1  1 .  1  2 1  6 . 0 9  1  0  8  8 2  1 .  0 5  0  

P O  IPA 0 . 5 8  1  0  0  .  7  1  0  1  2 1  1  0  

P O  EtOH 0 . 2 6  1  0  0 . 1 9  1  0  0  5 3  1  0  

P O  MeOH 0 . 1 2  1  0  0  . 1  1  0  0  3 7  1  0  

17 
N P  

R P  

P O  

P O  
P O  
18 
N P  
R P  
P O  
P O  

P O  

19 

Hep-EtOH 

CO o
 

H
 1 .  0  

HgO-MeOH 1 0 . 9  1 .  0  

IPA 0 . 7 9  1  0  

EtOH 0 . 3 2  1  0  

MeOH 0 . 1 5  1  0  

H e p - E t O H  

HzO-MeOH 
IPA 

EtOH 

MeOH 

10 .1 

10 .1 

0 . 7 2  

0 . 2  9  

0 . 1 4  

N P :  H e p - E t O H  8  .  . 6 6  1 .  0  .  ,  5  

9 ,  . 5 5  1 .  0  .  . 5  

R P :  HzO-MeOH 7  ,  . 7 9  1  0  

P O :  IPA 0  .  . 6 8  1  0  

PO: EtOH 0 ,  . 2 6  1  0  

0  ,  . 2 9  1  0  

P O :  MeOH 0  .  , 11 1  0  

8.69 1  .  1 1  1 .  4  .  5 7  

7 . 5  1  0  1 0 .  7 5  

0 . 7 7  1  . 2 1  0  .  1 .  3 3  

H
 

CM O
 1  .  1 1  0  .  0  .  5 8  

H
 

O
 1  0  0  .  4 4  

7.90 1  .  1 7  2  .  4  .  3 3  

7 . 3 4  1  .  0 7  0  .  1 1 .  0 7  

0 . 6 7  1  . 3 3  1  .  1 .  2 7  

CO H
 

O
 1  . 2 3  0  .  0  .  5 5  

0 . 1  1  . 2 1  0  .  0  .  4 1  
2  

5.47 1  .  0 6  1 .  3  .  5  

1  .  1 2  2  .  

6 . 4 1  1  0  8  .  6 4  

0 . 6 8  1  0  1 .  1 5  

1  0  

0 . 1 7  1  0  0  .  4 8  

1  0  0  .  6 0  

0 . 0 5  1  0  0  .  3 4  
0  .  3 9  

1 . 0 9  

1 
1.12 
1 . 0 9  
1 

1.08 

1 
1.1 
1. 08 

1 

1.1 
1.21 

1 
1 
1 
1 
1 
1 
1 

1 . 4 5  

0 
0 . 2 

0 . 6  

0 

1 . 5 1  

0 
0  . 4 4  
0  . 5 4 :  

0 

1 . 5  

14 
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Compound ristocetin A teicoplanin teicoplanin 
number" aglycone 
mobile phase'' k, alpha Rs k, alpha Rs ki alpha Rs 

20 
N P :  Hep-EtOH 6 . 6 6  1 0 5.52 1 . 0 5  1. 2 . 5 7  1 0 
R P :  HzO-MeOH 1 4  . 3  1 0 1 1 . 1  1 0 1 8 . 0  1 0 
P O :  IPA 0 . 4 5  1 0 0 . 5 1  1 0 0 . 9 8  1 0 
P O :  EtOH 0 . 1 9  1 0 0 . 1 1  1 0 0 . 4 3  1 0 
P O :  MeOH 0 . 1  1 0 0 . 0 5  1 0 0 .  3 3  1 0 
21 
N P :  Hep-EtOH 1 9 . 5  1. 0 . 5  11.46 1 . 1 7  2  .  00

 
w 00

 

1 . 0 9  1 
R P :  HgO-MeOH 2 5  . 9  1 0 1 3  . 0  1 . 1 8  1. 2 9 . 0  1 0 
P O :  IPA 1 . 0 7  1 0 1 . 0 1  1 . 4  1. 2 . 3  8  1 .  0 5  0 
P O :  EtOH 0 . 4  1 0 0 . 2 7  1 . 2 7  1. 0 .  8 8  1 . 0 9  0 
P O :  MeOH 0 . 2  1 0 0 . 1 2  1 . 2 5  0 . 0 . 6 9  1 0 
22 

N P  Hep-EtOH 3 . 6 8  =  3  .  4 2  =  4  6 2  =  4 7  3 1  1  7 5  5  . 8  1 6 . 3 7  1 .  2 7  2  6 9  

R P  HaO-MeOH 2 .  8 5  1  . 8  4  9 7  4  7 4  1  4 1  0  .  7  4  .  9  1  .  1  0  6 5  

P O  IPA 1 . 3  3  .  6  1  7 1  0  1 2  1  5 6  1  .  5  2 . 3 3  1 .  9 5  2  5 1  

P O  EtOH 0 . 4  3  6  6  3  7 6  0  3 9  1  7 1  3  . 0 1  1 . 3  1  .  3  1  9 5  

P O  MeOH 0 . 1 5  2  0 3  2  7 2  0  3 9  1  7 1  2  . 9 9  0 . 5 5  1 .  1 5  1  2 1  

23 
N P  H e p - E t O H  1 2  . 4  1  .  0 5  0  7  7 . 6 6  1  .  0 7  1  4 5  

00 H
 1  0  

R P  HaO-MeOH 2 8  . 5  1  .  3 5  1  5 1  1 6 . 8  1  0  5 3 . 3  1 . 1 6  1  5 2  

P O  IPA 0 .  6 5  1  0  0 .  8 4  1  .  1 3  0  5 4  1 .  7 5  1 . 1  0  2  

P O  EtOH 0 . 2 5  1  0  0 . 2  6  1  . 0 7  0  3 8  0 .  6 7  1 . 1  0  3  

P O  MeOH 0 . 1 2  1  0  0 . 1 5  1  0  0 .  5 7  1 . 1 2  1  1  

24 
N P  H e p - E t O H  2 0  8 8  1  . 2 1  2  5  * 1 4 .  1 6  1  .  0 3  0  6 5  1 7  .  1 4  1  0  

R P  HzO-MeOH 7  . 4 7  1  . 0 9  0  6  1 4  2 3  1  0  8  .  9 3  1  .  1 5  1  6 1  

P O  IPA 1  . 4 4  1  . 3 4  0  8 2  3  3 3  1  .  1 3  0  8  4  .  5  1  

00 o
 0  2  

P O  EtOH 0  4 3  1  . 2 1  1  3 5  0  6 4  1  .  1 2  0  4  1 .  5 6  1  0  

P O  MeOH 0  1 9  1  .  1 1  0  5  0  .  6 4  1  .  1 2  0  3  0  .  8 3  1  . 0 5  0  6 2  

25 
N P  Hep-EtOH 1 2  4 2  1  .  4 6  3  3 4  1 1  .  5  1  .  1 1  1  4 5  7  .  4 9  1  .  1 5  2  0 3  

R P  HzO-MeOH 1  5 4  1  . 3 1  2  6 1  1 6  8 1  1  .  0 9  1  1  1 2  .  7 1  1  .  1 0  1  4 5  

P O  IPA 1  9 3  1  . 5 1  1  2  2  .  1 3  1  . 1 4  0  7  2  .  6 2  1  . 1 6  0  5 8  

P O  EtOH 0  6  6  1  . 5 4  2  3  0  .  5 7  1  . 1 3  0  5 8  1 .  0 8  1  .  1 7  1  5  

P O  MeOH 0  2 4  1  . 3 6  1  6  0  .  5 6  1  . 1 2  0  5 8  0 .  7 0  1  . 2 5  2  5 3  

26 
N P  Hep-EtOH 1 1  6 2  1  0 8  1  5  1 0  .  4 4  1  .  0 2  0  2  7  .  9 5  1  .  0 3  0  5 1  

R P  HzO-MeOH 4  7 1  1  0  3  .  8 8  1  0  5  .  0 8  1  0  

P O  IPA 0  7 9  1  . 1 9  0  9 5  2  .  4 4  1  0  2  .  4 3  1  0  

P O  EtOH 0  2 6  1  . 2 5  0  6 5  0  .  4 5  1  0  0  .  8 4  1  0  

P O  MeOH 0  2 1  1  0  0  .  4 5  1  0  0 .  4 7  1  0  
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Compound ristocetin A teicoplanin telcoplanin 
number* aglycone 
mobile phase*" k; alpha Rs k, alpha Rs k% alpha Rs 

27 
N P :  Hep-EtOH 7 , . 6 3  1 . 11 1 . .5 6. .  6 3  1 0 5 . . 1 8  1 0 

R P :  HzO-MeOH 1 .  .  0 8  1 .. 1 0 . ,76 6 . . 4 5  

o
 

H
 0  . 5 2  11, . 3 2  1 0 

PO: I  P A  0, .  9 9  1 . 3 5  0 . .  7 6  1. .  7 6  l 0 2 . . 2 2  1 0 

P O :  EtOH 0 . ,31 1 . 2 2  0 . . 7 9  0 . . 4 3  i 0 0 . .  8 7  1 0 

P O :  MeOH 0 . .  1 2  1 0 0 . . 4 3  i 0 0 . . 5 6  1 0 

28 

N P  Hep-EtOH 5 . 8 4  1  3 2  3 0 3 8 3  1  1 9  2 6 9  2 9 2  1 .  3 2  3 6 6  

R P  HaO-MeOH 1 . 1  2 . 6 9 0 5  5 99 1  2 6  3 6 6 9 4  1 .  1 6  1  8 2  

P O  I  P A  0 . 6 5  1  75 1  5 0 5 3  1  6 8  1  96 0 8 5  1  . 7 1  8  

P O  EtOH 0  . 2 4  1 8 6  2 10 1  6 6  1 8 1  0 4 6  1 .  4 7  2 7 5  

P O  MeOH 0 . 1 6  2 1 2  3 4 4  1  6 8  1 8 1  0 3 9  1 . 4  3 0 7  

The number of the compound corresponds to the structure shown in Figure 3. 
NP = normal phase, Heptane/EtOH fbr R=98.5/1.5, for T=97.5/2.5, for TAG=90/10 (0.5 ml/min) at 

ImL/min unless otherwise indicated. RP = reversed phase, HzO/MeOH fbr R=70/30, fbr T=65/35, fbr 
TAG=50/50 at 1 ml/min PO= polar organic mode, all 100% alcohol with flow rate at 0.5 mL/min. k% = 
retention factor of die first eluting enantiomer, alpha = enantioselectivity factor, Rs = enantiore solution factor. 
All the data above are average values from triplicate analyzes, standard deviation below 0.06. * 
Hep/EtOH=95/5 due to the long retention time. 

Data were obtained using Heptane/ethanol=75/25 due to strong retention. When Heptane/ethanol=95/5 
was applied, the first peak came out at 67.05 min, corresponding to ki=20.8, and second peak was too broad. 
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CHAPTER 4 
REVERSAL OF ENANTIOMERIC ELUTION ORDER ON 

MACROCYCLIC GLYCOPEPTIDE CHIRAL STATIONARY 
PHASES 

A paper published in J. Liquid Chromatography & Related Technologies^ 

Tom Ling Xiao, B. Zhang, J.T. Lee, F. Hui, and Daniel W. Armstrong 

ABSTRACT 

The macrocyclic glycopeptides, vancomycin, teicoplanin, and ristocetin A are naturally 

occurring chiral molecules that have been developed into one of the most useful classes of 

chiral stationary phases (CSPs) fbr HPLC. Since these chiral selectors are structurally related, 

they tend to have similar, but not identical, enantioselectivities fbr most compounds. CSPs, 

of this type, with opposite enantioselectivities are rare. Two exceptions have been found to 

this. The oxazolidiones (starting materials fbr asymmetric synthesis) and dansyl amino acids 

all show a reversal in enantioselective retention on one of these three related CSPs. By using 

the HPLC assays developed fbr these compounds, the levels of enantiomeric impurities can 

be measured down to «0.01%. The enantiomeric purity of commercial oxazolidiones was 

determined. 

^Reprinted with permission from Journal of Liquid Chromatography & Related 
Technologies, 24(17), (2001) 2673-2684. Copyright © 2001 by Marcel Dekker, Inc 
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4.1. INTRODUCTION 

The macrocyclic glycopeptides are the newest and fastest growing class of chiral selectors 

fbr HPLC Figure 1 gives the structure of three related glycopeptides (i.e., vancomycin, 

teicoplanin and ristocetin A) that are available as chiral stationary phases (CSPs). In 

addition, the aglycone portion of teicoplanin (i.e., teicoplanin with the carbohydrate moitiés 

removed) was recently produced as a separate chiral stationary phased 

4 -
VANCOMYCIN TEICOPLANIN RISTOCETIN A 

Figure 1. Schematic showing the structures of the related macrocyclic glycopeptides: 

vancomycin, teicoplanin, and ristocetin A. 

The aglycone portion of all the macrocyclic glycopeptides contain either three or four fused 

macrocyclic rings (Figure 1_). Together, these fused rings form a semirigid basket-shaped 

entity. Each aglycone basket has associated with it: an amine moiety, a carboxylic acid group 

(which is esteriGed in ristocetin A) and phenolic moieties. These groups, along with an 

amino-saccharide, control the charge of these molecules. In addition, the aglycone contains 

several amide or peptide bonds (Figure 1 1. Each aglycone has one or more carbohydrate 

moieties attached at various locations. A single disaccharide is attached to vancomycin, while 
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teicoplanin has three monosaccharides associated with it (Figure _1_). Compared to the 

aglycone portion of these molecules, the carbohydrate moieties are relatively free to alter 

their orientation. 

As a class of chiral selectors, the macrocyclic glycopeptides have very broad 

enantioselectivity, and can be used in all chromatographic modes (i.e., reversed phase, 

normal phase and polar organic modes). The teicoplanin-based CSP (Chirobiotic T) is now 

the preferred means of resolving native amino acids (both natural and synthetic types). (11. 

(5) . (9-10) A distinct amino acid and carboxylic acid binding site has been identified fbr 

these related macrocvcles. (5). (7). (24) Furthermore, it appears that there are other binding 

sites fbr neutral and cationic chiral analvtes. (24) 

Clearly, vancomycin, teicoplanin, and ristocetin A are similar, structurally related molecules. 

They have the same biological function, which is to bind to D-alanyl-alanine moieties in the 

cell wall of Gram positive bacteria. (1-3). (8) Although they are related, these macrocycles 

are far from being identical. Thus, they have somewhat similar, but not identical selectivities. 

This property gave rise to the operating "principle of complimentary separations." This 

means that if only a partial enantioseparation can be obtained on one CSP, then it is likely 

that a baseline separation will be achieved on one of the related CSPs. (4). (6) 

Given the similarities of the glycopeptide chiral selectors, it is not surprising that 

enantiomeric elution order appears to be the same on all of these CSPs. Since these 

macrocyclic glycopeptides are complex, natural molecules, their enantiomers are unavailable. 

Consequently, reversing the enantioselectivity of a separation on these CSPs is difGcult, and 
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would be considered unusual. After performing thousands of separations on these CSPs over 

the last few years, we have found a few cases in which the enantioselectivity of a separation 

could be reversed either by using a related glycopeptide CSP or, in one case, by altering the 

mobile phase composition. This behavior has not been reported previously fbr this class of 

CSPs. 

4.2. EXPERIMENTAL 

Materials 

The HPLC-grade solvents [methanol, reagent alcohol, acetonitrile, glacial acetic acid, 

triethylamine (99+% pure) and hexane] were purchased from Fisher Scientific (Fair Lawn, 

NJ, USA). All racemates and single enantiomers of derivatized amino acids and neutral 

molecules used in this study were purchased from Aldrich (Milwaukee, WI, USA) and Fluka 

(Milwaukee, WI, USA). All HPLC Chirobiotic columns [Chirobiotic V (vancomycin), 

Chirobiotic T (teicoplanin), Chirobiotic R (ristocetin A)] were (stainless-steel 25 cm % 4.6 

mm) obtained from Advanced Separation Technologies, Inc. (Whippany, NJ). 

Methods 

The separations were performed on Shimadzu (Columbia, MD) HPLC systems equipped 

with Model LC-6A pumps, Model SPD-6A, and SPD-6AV UV detectors, SCL-6A and SCL-

6B system controllers, CR-601 and C-R3A Chromatopac integrators, and Rheodyne (Cotati, 

CA, USA) manual injectors. All samples were dissolved in methanol with concentration of 1 

mg/mL and all separations were achieved at room temperature (22°C). 

Mobile phases were prepared by mixing the indicated volumes of solvents or deionized and 

filtered water and degassed with a Crest Ultrasonic sonicator (Trenton, NJ, USA). The HPLC 



www.manaraa.com

146 

mobile phase flow rate was 1 ml/min and UV detection wavelengths were 254 nm fbr 

compounds containing aromatic rings and 220 nm fbr all others. The pH value of buffer 

mobile phase was measured with an Orion (Boston, MA, USA) pH meter Model 41 OA. 

Elution orders were determined by spiking a single pure enantiomer into the solution of the 

corresponding racemic compound. 

4.3. RESULTS AND DISCUSSION 

There are few reports on the reversal of enantiomeric retention on CSPs containing natural 

chiral selectors. (25-26) These CSPs usually are either protein-based or linear derivatized 

carbohydrates. (25-26) The reversal of enantiomeric elution usually was the result of a 

change in mobile phase composition, although temperature effects also could be relevant. A 

solvent induced conformational change in the chiral selector often was given as the reason fbr 

the change in selectivity. Note, that the changes in solvent composition that were reported 

were not drastic changes, such as going from the reversed phase mode to the normal phase 

mode (where the mechanism changed). Rather, they are milder changes, such as altering the 

organic modifier type or altering the pH in a reversed phase separation. 

The macrocyclic glycopeptides are much smaller than the biological polymers that are used 

as chiral selectors. Thus, they seem to be less susceptible to solvent-induced changes in 

enantioselectivity. Indeed, the only reverse in enantioselective retention we've documented 

on the vancomycin CSP (involving different mobile phases), was fbr N-benzyl-a-

methylbenzylamine (Figure 2_j. In this case, it took a rather drastic change in the mobile 

phase (i.e., from the polar organic mode to the reversed phase mode). It is less surprising to 

get a change in enantioselectivity if the retention mechanism is completely altered. Despite 
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this fact, the enantiomeric retention order of a wide variety of solutes on the macrocyclic 

glycopeptide CSPs is reasonably constant. Table l_lists several classes of molecules that 

appear to have the same basic enantioselectivity on the vancomycin, teicoplanin, and 

ristocetin chiral stationary phases. 

0 5 m 15 20 25 

Time, min 

Figure 2. Chromatograms showing the reversal in elution order for enantiomers of N-

benzyl-a-methylamine on the Chirobiotic V column (250 % 4.6 mm) resulting from a 

change in the mobile phase composition. Chromatogram (A) was generated in the polar 

organic mode (acetonitrile/0.1 % TEAA buffer, pH 4.1; 20/80, by volume). 
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Table 1. Some Classes of Compounds That Appear to Have the Same Enantiomeric 
Retention Order on Chirobiotic V, T, and R Chiral Stationary Phases 

1. FMOC-amino acids 
2. N-t-BOC-amino acids 
3. N-CBZ-Amino acids 
4. Nonsteroidal anti-inflammatory compounds 
5. Adrenergic blockers 
6. 4-Aryldihydropyrimidines 

Throughout the course of our studies, it was noted that a compound would sometimes have a 

different enantiomeric retention order on one of the macrocyclic glycopeptides CSPs. Thus 

far, all compounds that have shown this behavior fall into one of two classes: 1) the 

oxazolidinones, and 2) dansylated amino acids (Table 2A . 2B . Of these, the dansyl-amino 

acids show the most consistent behavior. The D-enantiomers are preferentially retained on 

the vancomycin and teicoplanin CSPs, while the L-enantiomer is more retained on the 

ristocetin CSP (Table 2A . 2B . It is the retention order on the ristocetin CSP that is unusual 

or anomalous. In most other cases, both the native and derivatized D-amino acids 

enantiomers are more retained on macrocyclic glycopeptide CSPs. Indeed, the biological 

function of these glycopeptides is to bind to D-alanyl-D-aianine on bacterial cell walls. The 

dansyl-fluorophore is a relatively bulky group and it contains an amine functionality. 

Apparently, this combination of additional steric-bulk and the hydrogen bonding or charge 

effect of the amine is sufficient to alter the enantioselectivity of ristocetin A, toward dansyl 

amino acids. 
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Table 2 A. Members of two classes of compounds where there is a change in the 
enantiomeric elution order on macrocyclic glycopeptide CSPs. 

Compound 

Oxazolidiones 

Structure 

Eludon order" 

MdbWe PAaee" 
Compound 

Oxazolidiones 

Structure 
Vancomycin 

V 

RlstocednA 

R 

Teicoplanin 

T 

MdbWe PAaee" 

RS - 4- phenyl -
2- oxazolidinone R S R 

T&R=100% 
MeOH 

V=HzO/MeOH 
(90/10) 

RS- 4- benzyl- 2-
oxazolidinone cfeo R S R 

T= 100% MeOH 
V=HzO/MeOH 

(90/10) 
R=H;0/Me0H 

(75/25) 

RS- 4- benzyl- 3-
propionyl-

oxazolidinone 
R Unresolved S 

T=BufEerVMeOH 
(90/10) 

V=MeOH/HzO 
(82/18) 

RS-
5,5,dimethyl-4-

phenyl-2-
oxazolidionone 05£ R S R V,R,T 

= Hex/EtOH 
(80/20) 

RS-3-benzyloxy 
carbonyl-4-
oxazolidine 

caiboxylic acid 

_ SV 
\ 7—G™ 0" C 0 

R R S 
T^BuSer/MeOH 

(80/20) 
R=Bufkr/MeOH 

(80/20) 
V= EtOH/HzO 

(40/60) 

4S,5R(+) - cis-
4,5- diphenyl-2-
oxazolidinone 

4R,5S 4S,5R 4S,5R V,R,T 
=EtOH/Hex 

(50/50) 

* The configuration of the Erst eluted enantiomer is given. 
^ The flow rate fbr all separation was 1.0 ml/min except fbr the first two compounds in this table which was 0.5 
ml/min. 
" The buffer was 1 % triethylamine acetate, pH= 4.1. 
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Table 2B. continued 

Dansyl-
Amino acid 

Structure 
Elution order* 

Mobf/e Phase* Dansyl-
Amino acid 

Structure Vancomycin RIstocednA Telcoplani 
n 

Mobf/e Phase* 

DL-
Valine •*CA\Î». 

L D L BufferVMeOH 
(80/20) 

DL-
Threonine 

CH, HO 

L D L 
BufFer/MeOH 

(80/20) 

DL-
Glutamatic 

acid CH, HOOC 

L D L 
Buffer/MeOH 

(80/20) 

DL-
Aspartic acid 

^>1 ll^COOH 

"^•RVV%O ) 
CH3 HOOC 

L D L 
Bu8er/MeOH 

(80/20) 

DL-
Serine 

<1 W°°H 

H A <TY°  )  
CH, HO 

L D L 
Bu8er/MeOH 

(80/20) 

DL-
Phenylalanine 9_%N-yCOOH 

"SVY D V-\ 
en, kx \_y 

L D  L 
BuOer/MeOH 

(80/20) 

D L -
Trytophan 

% COOH 

CH3 

H 

unresolved D  L BuSer/MeOH 
(80/20) 

D L -
Methionine I 1 %/N"VC00H 

<_ /CH3 
CH3 ^ s 

L D  L Buffer/MeOH 
(80/20) 

D L -
Norvaline r H 9^%N^COOH 

CH3 CH3 

L D  L Buffer/MeOH 
(80/20) 
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B 

L 

D D I 

1 ^ ^ 

0 20 40 0 20 40 

Time, min 

Figure 3. Chromatograms showing the reversal in elution order fbr dansyl-D, L-methionine 

on two different macrocyclic glycopeptide CSPs. Chromatogram A was generated using the 

Chirobiotic T column, and chromatogram B was generated using the Chirobiotic R column. 

The mobile phase compositions and other conditions are the same as given in Table 2A. 2B . 

It is known that amino acids associate with the amine moiety of these macrocyclic 

glycopeptides via their carboxylic acid groups. (1) . (5). (9-10) This association can be either 

electrostatic in nature or hydrogen bonding depending on the pH and/or mobile phase 

composition. The additional simultaneous interactions (required fbr chiral recognition) are 

thought to consist of hydrogen bonds to the amide groups of the aglycone, and in some cases, 

hydrophobic interactions (at least in the reversed-phase mode). Derivatizing the amine group 

of an amino acid with a fluorophore can alter the secondary interactions between the analyte 

and the aglycone. For example, the amino moiety of the amino acid would no longer be 

available fbr hydrogen bonding to the macrocyclic glycopeptide. However, the steric bulk of 



www.manaraa.com

152 

the fluorophore could accentuate either hydrophobic interaction (in the reversed phase mode) 

or steric repulsive interactions. As mentioned previously, the dansyl group also contains an 

amine moiety that could result in additional interactions. 

The oxazolidinones do not show consistent retention behavior, as do the dansyl-amino acids 

(Table 2A . 2B . It is not known how the oxazolidinones interact with the macrocyclic 

glycopeptides. Hence, the relative retentions reported can only be taken as empirical 

observations. The R-enantiomer always elutes before the S-enantiomer on the vancomycin 

CSP. However, there was no consistent pattern on either the ristocetin A or teicoplanin CSPs. 

Chiral oxazolidinones are widely used in asymmetric synthesis. Since they are commercially 

available starting materials, it is often assumed that they are enantiomerically pure. In 

previous work, it was shown that enantiomeric impurities were prevalent in most of the 

available chiral catalysts, auxiliaries, synthons, and resolving agents. (27) Table 3 gives the 

enantiomeric purity found fbr the oxazolidinones used in this study. Note the wide variation 

in the enantiomeric purity found fbr this class of chiral compounds. As was noted previously, 

the batch-to-batch enantiomeric purity of each of these commercial chiral auxiliaries varies 

widely, since there is no enantiomeric quality control in their production or sale. (26-27) 
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Table 3. The enantiomeric composition of chiral compounds which show reversal in 
enantiomer elution order 

Compound Commercial Enantiomeric composition Separation 
name source Enantiomeric Enantiomeric Method number* 

contaminant(%) excess(%) 
RS - 4- phenyl - 2- 8=0.05 R=99.90 

oxazolidinone Aldrich R=0.20 8=99.60 1 

RS- 4- benzyl- 2- 8=0.06 R=99.88 
oxazolidinone Aldrich R=0.03 8=99.94 2 

RS- 4- benzyl- 3- 8=0.30 R=99.40 
propionyl- Aldrich R=0.14 8=99.72 3 

oxazolidinone 
RS- 5,5,dimethyl- R=0.03 8=99.94 

4-phenyl-2- Aldrich S=0.08 R=99.84 4 
oxazolidionone 
RS-3-benzyloxy 8=2.38 R=95.24 

carbonyl-4- Aldrich R=0.85 8=98.30 5 
oxazolidine 

carboxylic acid 
48,5R(+) - cis- 4R, 58 = 0.08 4S, 5R=99.84 

4,5- diphenyl-2- Aldrich 4S, 5R=3.11 4R, 5S =93.78 6 
oxazolidinone 

* Method No. 1= Chirobiotic T. Mobile phase 1% TEAA/MeOH=80/20(pH=4.1 ), Flow rate 1 ml/min. 
Method No. 2 = Chirobiotic T. Mobile phase 1% TEAA/MeOH=90/10(pH=4.1), Flow rate 1 ml/min. 
Method No. 3 = Chirobiotic T. Mobile phase 1% TEAA/MeOH=85/15(pH=4.1), Flow rate 1 ml/min. 
Method No. 4 = refer to D. W. Armstrong et al./ Tetrahedron: Asymmetry 9 (1998) 2043-2064. 
Method No. 5 = Chirobiotic T^o- Mobile phase 1% TEAA/MeOH=70/30(pH=4.1), Flow rate Iml/min 
Method No. 6 = Chirobiotic T. Mobile phase Hex/EtOH=50/50, Flow rate Iml/min 
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CHAPTER S. ASSIGNMENT OF ABSOLUTE CONFIGURATION OF A 

CHIRAL PHENYL-SUBSTITUTED DIHYDROFUROANGELICIN 

A paper published in Organic and Biomolecular Chemistry^ 
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Dept. of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027 

Tom L. Xiao, Roman V. Rozhkov, Richard C. Larock and Daniel W. Armstrong 

Department of Chemistry, Iowa State University, Ames, IA 50011 

ABSTRACT 

A phenyl-substituted chiral dihydrofuroangelicin, 4-methyl-8-(2-E-phenylethenyl)-8,9-

dihydro-2//-furo[2,3-A]-1 -benzopyran-2-one, synthesized in racemic form, has been resolved 

by HPLC chiral separation, and its absolute configuration determined by the non-empirical 

exciton chirality method. The solution conformation has been investigated through NMR and 

molecular modeling methods: two minima found by molecular mechanics and DFT methods 

are in keeping with observed 'H-'H V coupling constants and NOE effects. The experimental 

CD spectrum fbr the second eluted enantiomer shows a positive couplet between 230 and 350 

nm (amplitude ^4 = + 15.7); by application of the exciton chirality method, the absolute 

configuration of this enantiomer at C8 is determined as (5). The experimental spectrum is in 

very good agreement with the one evaluated by means of DeVoe coupled-oscillator 

calculations, using the DFT calculated geometries. 

^Reprinted with permission from Organic & Biomolecular Chemistry, 2003,1,186-190. 

Copyright © the Royal Society of Chemistry 2003 
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5.1. INTRODUCTION 

It is well known that many substituted furocoumarins are pharmacologically active. For 

example, they have been used fbr the treatment of skin diseases such as psoriasis and 

vitiligo.- Warfarin is an anticoagulant that depresses formation of prothrombin and also 

increases the fragility of capillaries which can lead to hemorrhages.- Recently, a variety of 

chiral, substituted dihydrofurocoumarins have been isolated as natural products and shown to 

have several useful pharmacological properties. For example, marmesin and columbionetin 

derivatives have been shown to exhibit cytotoxicity against KB cells,- to inhibit c-AMP 

(which affects coronary vasodilation),- and to mediate the action of acetylcholinesterase 

(which plays a role in Alzheimer's disease).- A related dihydropsoralen, isolated from 

Dorafema coMfrq/erva, may moderate the adverse effects of rattlesnake venom.^ 

Because of their importance, numerous syntheses of dihydrofurocoumarins have been 

published over the last 30 years.^ The earlier methods were characterized by numerous steps 

(8 to 10) and relatively low yields (2-20%)/ Later methods have required fewer steps and 

generally produce higher yields.- One of the most recent and more general approaches 

involves the palladium catalyzed annulation of 1,3-dienes by o-iodoumbelliferones.^ This 

annulation proceeds in 70-85% yields with a variety of 1,3-dienes.^ Numerous substituted 

dihydrofuroangelicins 1 and dihydrofuropsoralens 2 (Chart 1) have been produced vza this 

approach. 
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O 

1 2 

Chart 1. 

Although these compounds are usually chiral (when Ri ^Rz), no efficient asymmetric 

synthesis has yet been reported. Also, the absolute configuration of some of the natural 

products has not been determined. In cases where one of the substituents (Ri or R% above) 

contains an aromatic moiety, the possibility exists of using the exciton chirality method to 

determine the absolute configuration of these compounds. To test this possibility, compound 

3 fChart 2) was synthesized, resolved, and its absolute configuration investigated. 

O 

Chart 2. 

The exciton chirality method is a convenient and versatile approach fbr the structural 

investigation of chiral organic molecules when their absorption and circular dichroism 
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spectra are dominated by intense electric dipole allowed transitions, such as the ones allied to 

strong aromatic chromophores.^ Any electric dipole allowed transition may be described in 

terms of a transition dipole moment. When two transition dipole moments are close in 

energy, lie near to each other in space and form a chiral array, their through-space interaction 

gives rise to distinctive spectral features: in the CD spectrum, a bisignate couplet is obtained 

whose sign is determined by the absolute sense of twist defined by the two dipoles; a positive 

twist corresponds to a positive couplet (i.e., with a positive long-wavelength branch), and 

vzce versa. If the direction of transition dipoles within the molecular geometry is known, the 

absolute configuration may be derived.^ The presence of conformational ambiguity, or an 

unsuitable geometrical arrangement between dipoles, however, may preclude the 

straightforward application of this method.^ 

Full exciton-coupled CD spectra can be calculated with various methods; DeVoe coupled-

oscillator calculations^^ have been widely used fbr small organic molecules and polymers.^ 

The parameters necessary fbr the calculations are: (1) the molecular geometry, determined 

through experimental techniques and molecular modeling; (2) the spectral parameters 

(transition frequency, dipolar strength and bandwidth) extracted from the absorption spectra 

of the isolated chromophores; (3) position and direction of transition moments, usually 

determined by quantum mechanical calculation methods. 

The inspection of the molecular structure of 3 (Chart 2) commends attention to the exciton 

chirality method as a most suitable approach fbr the determination of the absolute 

configuration in this case. This compound is in fact endowed with two strong aromatic 

chromophores (the coumarin and the styrene) located nearby in space, which give rise to 

intense electronic absorptions close in energy. Moreover, the spatial arrangement between 
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the two chromophores, investigated through CD, will largely depend and be sensitive to the 

absolute configuration at the stereogenic center. 

By taking into consideration these characteristic features of 3, we performed molecular 

mechanics and DFT modeling, as well as CD and NMR experimental studies, before 

applying DeVoe calculations of circular dichroic properties. 

5.2. Results and discussion 

Molecular modeling 

The molecular conformation of 3 was investigated through a combination of molecular 

mechanics and DFT calculations. The whole conformational space was sampled by means of 

Monte Carlo (MC) simulations^ with the molecular Merck force Geld (MMFFs), which is 

known to be very accurate fbr small organic molecules.^ MC/MMFFs calculations, run in 

CHCI3, reveal the presence of two main degrees of freedom, related to the Gve-membered 

ring conformation and the rotation around the C8-C10 bond, described through the H8-C8-

C10-H10 dihedral angle (Scheme lal Six minimum energy conformations were found 

overall by MC/MMFFs, which were further optimized by DFT calculations with B3LYP/6-

31G** in CHCI3, resulting in the two structures shown in Scheme la as the lowest energy 

minima. In conformer I, the substituent occupies the pseudo-equatorial, and in conformer II 

the pseudo-axial position of the Gve-membered ring. In both structures the C-C styrene 

double bond is ayn to the C8-H8 bond, with =475°. The four other minima have energies 

higher than 6 kJ mol ^ with respect to conformer I and negligible Boltzmann populations at 

room temperature. 
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Scheme 1. 
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NMR spectra 

'H NMR spectroscopy and, in particular, the chemical shifts, the V couplings and the relative 

NOE's between protons H8, H9, HIO and Hll (Chart 2 and Scheme 11 have been used to 

check the conformational picture arising from molecular modeling. 

Only one set of signals is apparent in the ^H NMR spectrum in CDCI3, proving that either 

only one conformer is present, or the interconversion between confbrmers is fast on the NMR 

timescale; this is expected fbr the Gve-membered ring flip and the rotamerism around the 

C8-C10 bond. Proton H9a is up field shifted with respect to H9b by 0.4 ppm, and may be 

assigned a pseudo-axial position, considering both that axial protons generally resonate 

upGeld of equatorial ones,^ and that the equatorial H9b is subjected to the deshielding effect 

of the phenyl ring current shift. Based on the relative NOE's (Scheme lb\ derived from a 

NOESY spectrum (not shown), proton H8 is closer and c&s to H9b, and frons to H9a; this is 

also substantiated by the different values of V (J^,H% = 7.5 Hz, Jo*™ = 9.4 Hz) analyzed 

through the Karplus equation.^ Thus, proton H8 lies in a pseudo-axial position, and the 

substituent at the stereogenic center occupies a preferred pseudo-equatorial position; this is 

the same situation occurring fbr the absolute minimum (Scheme la. conformer I) found by 

DFT. 

The value of = 7.42 Hz, analyzed through a Karplus-type equation fbr vinylic/allylic 

protons,^ leads to an estimated H8—C8-C10-H10 average dihedral angle =140°; structures 

with large values of ^ are therefore dominant in solution, in agreement with the modeling 

results. This geometry around the C8-C10 bond is further confirmed by the strong NOE's 

between protons H8/H11 and H9a/H10 (Scheme Ibl. It may be concluded that the DFT 
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results faithfully depict the conformational situation in solution, and can be confidently used 

fbr the subsequent CD calculations. 

Chromophore electronic structure 

The UV absorption spectrum of compound 3 above 230 nm (Fie. 1. bottom) is dominated by 

the transitions of the aromatic chromophores. Two maxima are detected at 321 nm (6 = 

12700 M"' cm"') and 252 nm (e = 23000 M"' cm"') in acetonitrile, allied respectively to the 

conjugation or K bands of the coumarin and styrene chromophores.^ 

10 
31* nm, Ac *7.7 

5 

- Experimental 4 ? +15,7 
CaWaW A a *117 5 

-10 
À 2 

2*0 320 300 340 

1 (nm) 

Fig. 1 UV (bottom) and CD (top) spectra of compound 3 in acetonitrile. Top, solid line: 

experimental CD spectrum fbr second eluted enatiomer 1.84 % 10"'M in acetonitrile. Top, 

dotted line: CD calculated as Boltzmann average of DFT derived structures fbr the (5) 

configuration, with the DeVoe method and parameters as in Table 1 and Scheme 2. 
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The relevant parameters fbr DeVoe calculations have been extracted from the UV spectra 

of 7-hydroxy-4,8 -dimethylcoumarin in acetonitrile and styrene in hexane,^ and adapted to 

reproduce better the UV spectrum of 3, and are reported in Table 1. Both transitions have 

long-axis polarization in the respective ring systems. Due to the presence of substituents (in 

particular, the oxygen at position 7, Chart 21 the exact polarization of the coumarin transition 

needed to be calculated. By a CNDO-S/CI calculation on 7-hydroxy-4,8-dimethylcoumarin 

(geometry obtained with DFT, B3LYP/6-31G**), we found a small rotation (<5°) between 

the transition dipole and the coumarin ring long axis (as shown in Scheme 21 

Table 1. Spectroscopic parameters^ of electronic transitions of compound RR-210 used fbr DeVoe's 

Scheme 2. 

calculations. 

# Type Xmax/nm D/D^ v^/cm ' Av^/cm 

1 Coumarin^ 318 20 31,400 4,000 

2 Styrene^ 254 30 39,400 3,600 

^ A™» wavelength maximum; D dipolar strength; Vn*% &equency maximum; Avi/z half-height width. 
^ From UV spectrum of 7-hydroxy-4,8-dimethyl coumarin in acetonitrile. 
^ From UV spectrum of styrene in hexane (ref. 21). 
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CD spectrum, exciton chirality method and DeVoe calculation 

The experimental CD spectrum of the second eluted enantiomer (Tie. 2: see Experimental 

Section fbr chiral HPLC conditions) of 3 in acetonitrile (Tie. 1. top, solid line) shows a 

positive couplet between 230 and 350 nm with a peak at 319 nm, As - +7.7, a trough at 253 

nm, Ae = -8.0, and couplet amplitude = +15.7. The symmetrical appearance of the couplet 

supports its interpretation as being due to non-degenerate exciton coupling between the two 

above discussed transitions, with small interference from higher energy ones. Integrated 

rotational strengths are +2.5 % 10^* and -1.8 % 10^* cgs units, respectively; the negative low 

wavelength branch is partially cancelled by superimposition with the positive Cotton eflect 

appearing at higher energies. 

Fig. 2 HPLC chromatogram of the enantiomeric separation of compound 3. The 
chromatogram was obtained using a Chirobiotic T column and a hexane plus 2% ethanol (by 
volume) mobile phase. The flow rate was 1.0 mL mûr'. See the Experimental section fbr 
further details. The absolute configurations (S and 7!) of the first and the second eluted 
enantiomers fbr 3 were determined as outlined in the Results and discussion. 

Therefore, the absolute configuration of 3 can be assigned by the exciton chirality analysis 

of the experimental CD. By inspection of the molecular structure of the (6) enantiomer in the 

lowest energy conformation I fScheme 21 it is apparent that the two above discussed 

A S 
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transition dipoles define a positive chirality (that is, the transition moment 2 in front may be 

superimposed on the moment 1 in the back after a c/oc&wzae rotation). The same is true for 

the (5) enantiomer in the conformation II. Thus, the second eluted enantiomer, showing a 

positive CD couplet between 230 and 350 nm, may be assigned the (5) configuration. 

Furthermore, this assignment is confirmed by quantitative CD theoretical calculations 

using the DeVoe method and the spectral and geometrical parameters discussed above, 

placing the dipoles in the middle of the styrene and coumarin chromophores (Scheme 21 The 

CD calculated as a Boltzmann-weighted average at room temperature for confbrmers I and II 

with an (5) configuration, shows a positive couplet with amplitude = 11.7 (Tie. 1. top, 

dotted line), in good agreement with the experimental spectrum for the second eluted 

enantiomer. Other conformations with higher energies have calculated CD with intensities 

comparable to the ones for the first two, and after weighing with respective Boltzmann 

factors they give a negligible contribution. Small displacement (within 0.3À) and/or rotations 

(within 10°) of dipoles affected the calculated CD intensity only to a minor extent, and in no 

case was the sign reversed. Thus, DeVoe CD calculations can be reliably applied for the 

present configurational assignment. 

53. Conclusion 

The absolute configuration of a chiral, phenyl-substituted dihydrofuroangelicin (compound 

3) has been assigned by means of the exciton chirality method and DeVoe CD calculations. 

The solution structure of 3 has been determined by NMR spectroscopy and molecular 

modeling with molecular mechanics and DFT methods. The spectroscopic parameters 

necessary for the CD calculations have been extracted from the UV spectra of isolated 
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chromophores, and calculated by a CNDO method. The second eluted enantiomer of 3 (Fig. 

2), with positive CD at 319 nm and negative CD at 253 nm, has an (5) absolute 

configuration. 

5.4. EXPERIMENTAL AND COMPUTATIONAL SECTION 

General procedures 

HRMS experiments were performed on the Kratos MS50TC double focusing magnetic sector 

mass spectrometer using EI at 70 eV. IR. spectra were performed on the IR-Bomen 

Michelson MB-102 FT-IR spectrometer. 

'H and "C spectra were recorded at 400 and 100.5 MHz respectively using a Varian 400 

MHz instrument, and chemical shifts are reported in ppm relative to TMS (6), with coupling 

constants (J) in Hz; proton numbering refers to Chart 2. 'H-NOESY spectrum was recorded 

at 600 MHz using a Varian Unity INOVA 600 with 1.5 s mixing time. 

The UV spectrum for 3 was recorded on a Varian Cary 100 Bio UV-VIS 

spectrophotometer. The molar absorptivity was determined at three wavelengths (204 nm, 

252 nm, and 321 nm). The concentration of all samples was adjusted so that their absorbance 

was in the range of 0.2 and 1.5 absorbance units. The molar absorptivities of 3 are: 59000, 

23000, and 12700 at the aforementioned three wavelengths respectively. 

CD spectra were measured in spectroscopy grade acetonitrile with a Jasco J-810 

spectropolarimeter, using a 1 cm cell, and the following conditions: SBW 1 nm, 50 nm min"\ 

response 1 s, 8 scans. 
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MC/MMFFs and DFT calculations were run respectively with MacroModel 7.1 and 

Jaguar 4.1 (Schrôdinger, Inc., Portland, OR).^ 

CNDO/S-CI calculations were run with a CNDO/M program, according to Del Bene and 

Jaffe's formulation,^ with Mataga approximation of two-electron repulsion integrals, 

including in the CI up to 648 singly excited states, with maximum energy values of 7.0 eV. 

DeVoe calculations were run with a Fortran program due to Hug and co-workers.^ 

Synthesis of the dihydrofuroangelicin 4-methyl-8-(2-E-phenylethenyl)-8,9-dihydro-2#-

furo[2,3-A]-l-benzopyran-2-one (3) was accomplished by annulation of (E)-l-phenylbuta-

1,3-diene by the corresponding 7-acetoxy-8-iodo-4-methylcoumarin as reported elsewhere 

(Scheme 3 V 

Mp 145-148 °C; 'H NMR (CDCI3) J/ppm 2.32 (3 H, d, ^ = 0.8 Hz, CH,), 3.16 (1 H, 

dd, = 16.1 Hz, = 7.5 Hz, H9a), 3.55 (1 H, dd, = 16.1 Hz, = 9.4 Hz, 

H9b), 5.49 (1 H, m, = 9.4 Hz, Jmuw. = 7.5 Hz, = 7.4 Hz, = 1.0 Hz, H8), 

6.03 (1 H, d, ^,cH3 = 0.8 Hz, H3), 6.28 (1 H, dd, Vmo.Hn = 15.8 Hz, ^ 7.4 Hz, H10), 6.67 

(1 H, dd, = 15.8 Hz, =1.0 Hz, Hll), 6.72 (1 H, d, = 8.4 Hz, H6), 7.17-7.36 

(5 H, m), 7.35 (1 H, d, = 8.4 Hz, H5); "C NMR (CDCI3) ^19.24, 33.28, 85.90, 106.77, 

111.50, 113.69, 114.34, 125.76, 126.97, 127.33, 128.51, 128.85, 133.32, 136.02, 151.10, 

153.26, 161.28, 163.44; IR (neat) 3050 (-CH), 1727 (C-O), 1615 (C-C) cm '; HRMS for 

CzoH.A found: 304.1104, calc.: 304.1099. 
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Scheme 3 

The enantiomeric separation of racemic 3 was performed on an HP 1050 HPLC system 

equipped with UV detector, auto-injector, and computer controlled Chem-station data 

processing software. Both preparative and analytical separations were carried out using a 

Chirobiotic T, 250 % 4.6 mm id, (Advanced Separation Technologies Inc., Whippany, NJ) 

column^ with baseline resolution and very good reproducibility (Tie. 21 The first eluted and 

second eluted peaks were collected manually. The normal phase mode was used for the 

enantiomeric separation with a mobile phase of hexane and 2% (by volume) ethanol. The 

injection volume was 2 pL. Separations were carried out isocratically at a flow rate of 1 mL 

min-i at room temperature (22 °C). The mobile phase was premixed and degassed under 

vacuum conditions. All HPLC grade solvents were purchased from Fisher Chemical. 

Detection wavelengths were monitored at both 254 nm and 220 nm for confirmation that the 

same peak absorption ratio for the enantiomer pairs occurred. 
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CHAPTER 6. 

ABSOLUTE STEREOCHEMISTRY OF DIHYDROFUROANGELICINS BEARING 

C-8 SUBSTITUTED DOUBLE BONDS: A COMBINED CHEMICAL/EXCITON 

CHIRALITY PROTOCOL 

A Paper published in Organic & Biomolecular Chemistry' 

Katsunori Tanaka, Gennaro Pescitelli, Lorenzo Di Bari, Koji Nakanishi, and Nina Berova 
q/^CAe/MW/yy, Co/wmAza [/»zverfz(y, JView JView Tort 70027, C/&4; 

Tom L. Xiao and Daniel W. Armstrong 

Dqmzrfmenf q/" Tbwa C/»zversz(% v4f?zea, 24 

ABSTRACT 

Coumarins are associated with a variety of pharmacological activities which have led to the 

synthesis of numerous derivatives. However, no general method for determination of the 

absolute configuration of chiral coumarins is known. This has now been achieved for a series 

of dihydrofuroangelicins bearing a variety of C-8 substituted double bonds, synthesized in 

the racemic form and resolved through enantioselective chromatography. A combined 

chemical/chiroptical protocol has been developed in which the C-C double bonds are 

replaced with a styrenoid chromophore through either (i) cross metathesis, (ii) Heck reaction, 

or (iii) a combined method of cross metathesis and Heck reaction with about 1 mg sample 

under mild conditions. The coupling between the styrenoid and coumarin chromophores 

'Reprinted with permission from Organic & Biomolecular Chemistry, 2004,2,48-58. 

Copyright © the Royal Society of Chemistry 2004 
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gives rise to clear-cut exciton coupled CD curves, suitable for assignments of absolute 

configurations. The solution conformation of the styrenoid derivatives is determined by 

NMR and DFT molecular modeling; the electronic structure of the 7-hydroxy coumarin 

chromophore is also clarified by semi-empirical and TDDFT methods. The conformation 

thus derived, in conjunction with quantitative DeVoe's coupled-oscillator CD calculation, 

establishes the absolute configurations of the coumarins. The theoretical study described 

herein justifies the straightforward approach of the current chemical/exciton chirality 

protocol to this type of dihydrofuroangelicins. 

6.1. INTRODUCTION 

Coumarins exhibit various pharmacological activities.- Marmesin and columbianetin 

derivatives are cytotoxic against KB cells/ inhibit cAMP^ and mediate the action of 

acetylcholinesterase involved in Alzheimer's disease, while a related dihydropsoralen, from 

.Borafenâ? coMfrq/erva, is reported to moderate the toxicity of rattlesnake venom.* Warfarin is 

an anticoagulant (the J isomer is more potent) that depresses the formation of prothrombin/ 

while synthetic coumarins have been used for treating skin diseases such as psoriasis and 

vitiligo.* Such conspicuous pharmacological activities have led to numerous syntheses of 

chiral coumarins over the past 30 years, including the recent preparations of substituted 

dihydrofuroangelicins A and dihydrofuropsoralens B (Chart 11/ This method relies on the 

palladium catalyzed annulation of 1,3-dienes by o-iodoumbelliferones, proceeding in 70-

85% yields with a variety of 1,3-dienes; many substituted furocoumarins A and B have been 

synthesized using this route. Although efficient enantiomeric separations of these compounds 

have been reported,* no efGcient method to determine their absolute configurations (when 
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Ri z&a) is known. In general, the assignment of the absolute configuration of chiral coumarin 

and isocoumarin derivatives has relied on chemical correlations with compounds of known 

configuration/ empirical comparisons of optical rotations and CD curves,^ or other empirical 

approaches such as Horeau's or modified NMR Mosher's method.^ 
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Chart 1 The structures of various C-8 alkenyl substituted dihydrofuroangelicins and their 

corresponding styrene derivatives. 

The circular dichroic (CD) exciton chirality method is a rehable non-empirical approach 

based on the coupled-oscillator theory, which has been widely employed for determining the 

absolute configuration of various organic compounds, including many natural products.^ In 

the context of coumarin chemistry, the application of the exciton method has so far been 
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limited to rigid dimers;^ on the other hand, it is noteworthy that a coumarin-based 

chromophore, 7-diethylaminocoiimarin-3-carboxylic acid, has been recently proposed as an 

exciton CD-reporter group.^ In view of the potentiality offered by the presence of the 

coumarin chromophore in compounds A and B (Chart 11 it was considered that if a suitable 

chromophore were present at C-8, it might lead to diagnostic exciton coupling with the 

coumarin moiety and allow determination of the absolute configuration. 

This strategy was tested with one of the synthetic chiral dihydrofuroangelicins, 4-methyl-

8-(2-E-phenylethenyl)-8,9-dihydro-2#-furo[2,3-A]-l-benzopyran-2-one 1.- This compound 

was already endowed with a styrenoid chromophore which coupled favorably with the 

coumarin moiety due to the proximity of their UV bands. In fact, the CD spectrum of 1 

showed a moderately intense CD couplet in the 240-330 nm region, in correspondence with 

the two more intense red-shifted electronic absorptions of the styrene and coumarin 

chromophores. The solution conformation of 1 was elucidated by NMR and molecular 

modeling, and the interchromophoric arrangement turned out to be sensitive to the absolute 

configuration at the stereogenic center. Application of the exciton chirality approach, 

substantiated by quantitative CD calculations by means of DeVoe's method, afforded 

assignment of the absolute configuration of 1 in a non-empirical manner.^ 

On the basis of these results, we report herein a general protocol for the determination of 

absolute configurations of dihydrofuroangelicins 2-6 linked at C-8 to variously substituted 

double bonds (R, or R%, Chart 11 As shown in Fie. 1 for chiral furocoumarins 2, 5, and 6, 

these compounds have weak CD spectra above 200 nm; in particular, the intense red-shifted 

coumarin m—%* transition (band I at 320 nm, 6= 13000) gives rise to only modest 

Cotton effects. It is conceivable that some contributions to the observed CD arise from the 
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exciton coupling between the coumarin and the lowest energy % * transition of the 0"C 

double bond (ca. 195 nm, c12000); however, the latter is clearly obscured by overlap with 

other transitions around 200 nm. In conclusion, the weakness of these bands and absence of a 

clear-cut exciton feature hampers direct application of the exciton chirality. 
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o^o^o 
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W go (&) CD (4 CD 

Siy ' 

, ^ 3Z2T*,,1»m ' 
! %6' 

'-IS • , "-x 

'  u v  i  *  '  . .  _  . '  \  u v  ^  ^  y  \  u v  

*0 2*0 ** 3K MB 200 MO M3 300 MO 
À <nm3 k (nm) * (nm) 

Fig. 1 UV (bottom) and CD (top) spectra of dihydmfurocoumarins 2, 5, and 6 in acetonitrile. 

Spectrum (a), Erst eluted enantiomer of 2 separated by chiral HPLC, 4.16 x 10^M; spectrum 

(b), first eluted enantiomer of 5 separated by chiral HPLC, 6.46 x 10^ M; spectrum (c), Erst 

eluted enantiomer of 6 separated by chiral HPLC, 4.34 % 10^ M. HPLC methodologies are 

given in reference 8. 

Therefore, it was desirable to devise a scheme that converts the side chain double bond of 

dihydrofuroangelicins 2-6 into other suitable chromophores, for example, a styrenoid (K 

band at 248 nm, 6= 15000)/* that would couple more effectively with the coumarin. 

Moreover, considering the scarcity of such chiral coumarins either from natural sources or 

upon enantioselective separation of racemates, it was important to have an efGcient micro-

scale method to convert the variously substituted double bonds into aromatic chromophores 
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under mild conditions, leaving the coumarin moiety intact. Once the derivatization into 

suitable styrenoid chromophores was achieved, the corresponding CD spectra were found to 

be suitable for a straightforward exciton analysis. Prior to this, the solution conformations 

were extensively studied by means of NMR and DFT molecular modeling. Moreover, the 

qualitative exciton chirality assignment was substantiated by means of quantitative CD 

calculations run with DeVoe's method;- to provide better parameters for DeVoe calculations, 

the electronic structure of 7-hydroxy coumarin chromophore was also investigated with 

semi-empirical and time-dependent DFT techniques. The agreement between experimental 

and calculated CD (Boltzmann-weighted average for DFT-computed structures) allowed the 

absolute configuration of these furocoumarins to be established. Furthermore, the results 

from theoretical studies provide a sound basis for application of the combined 

chemical/chiroptical approach described in this paper to new C-8 alkenyl 

dihydrofuroangelicin analogs in a straightforward manner without extensive conformational 

analysis and CD calculations. 

6.2. RESULTS AND DISCUSSION 

Derivatization of dihydrofuroangelicins (2-6) into the styrenoid derivatives 

The initial strategy for the conversion of dihydrofuroangelicins 2-6 (Chart 11 into styrene 

derivatives is shown in Scheme 1. The dihydrofuroangelicins would be converted to the 

corresponding carbonyl compounds the oxidative cleavage of the double bonds directly 

by ozonolysis or by the two-step procedure of dihydroxylation with osmium tetroxide (OsO*) 

followed by treatment with sodium periodate (NalO»). Then, these caibonyl compounds were 

thought to react with Wittig reagents to provide the styrenoid derivatives. This strategy was 
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first tested on racemic 2 and 5, which were prepared in a large quantity according to the 

established method of palladium catalyzed annulation of 1,3-dienes by o-

iodoumbelliferones/ Thus racemic 2 was reacted with a catalytic amount of OsCL in the 

presence of two equivalents of NalO, for three hours at room temperature to give the 

corresponding aldehyde 7 in 44% yield. The employment of OsO/NalO, oxidant was 

preferable to ozonolysis, because the exact amount of the reagent could be measured, thus 

avoiding over-oxidation of the coumarin double bond. When aldehyde 7 was reacted with 

Homer-Emmons reagent, diethyl benzylphosphonate, at 100 °C in THF, the corresponding 

(_E)-styrene derivative of 2 was obtained with very low yield (less than 5% yield) and most of 

the starting material 7 was recovered. Presumably this was due to the sterically hindered 

quaternary carbon atom next to the aldehyde group in 7. 

Furthermore, the treatment of racemic 5 with OsO/NalO, oxidant unexpectedly provided 

the diols 8a and 8b in 1 : 1 diastereomeric ratio in 48% yield, without any trace of the 

carbonyl derivative even at elevated temperatures. The resistance of these diols toward NalO* 

oxidation might be related again to the steric hindrance around the two consecutive 

quaternary caibon centers in 8a and 8b. Namely, the oxidant NalO, would fail to access the 

diols to form the corresponding cyclic iodoester that provides the ketone derivative. 

Therefore, it was concluded that conventional oxidative cleavage of the double bonds 

followed by Wittig chemistry is not applicable for derivatization of these sterically hindered 

furocoumarins such as 2 and 5. 
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Scheme 1 Initial trials for conversion of 2 and 5 into styrenoids via an oxidation-Wittig 

strategy. 

On the other hand, during our recent study on developing a new chemical/chiroptical 

method for configurational assignment of allylic alcohols and amines/* we found out that 

cross olefin metathesis^^ is suited for introducing the styrene chromophore as a CD reporter 
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group. By using the recently developed Grubbs' second generation ruthenium catalyst 9^ 

(structure shown in Scheme 21 the linear allylic mono- and 1,2-disubstituted C-C double 

bonds can be replaced with the styrene group in high yields under mild conditions without 

epimerization of the substrates.^ The styrenoid chromophore introduced then couples with 

the allylic acylate to yield a distinct couplet. The method overcomes the restriction of the 

conventional allylic benzoate method that gives rise to weak CD couplets, for which in many 

cases only one wing of the couplet is observable.— Therefore, we considered cross metathesis 

as an attractive alternative in the present case; it was interesting to examine how this 

chemistry would work in the conversion of a variety of the sterically hindered C-C double 

bonds, namely, 1,2-disubstituted (2), 1,2,2-trisubstituted (3), endocyclic double bond (4), 1,1-

disubstituted (5), and 1,1,2-trisubstituted (6) double bonds into the corresponding styrenoids. 

If the cross metathesis did not work, combined methods with other chemical transformations, 

Heck reaction, would be utilized. 

After examination of a variety of reaction conditions, it was found that the adaptation of 

either cross metathesis,Heck reaction, or combined cross metathesis and Heck reaction, 

satisfied the criteria of mild micro-scale reactions; all double bond substitution patterns in the 

dihydrofuroangelicins 2-6 (Chart 11 could be replaced with the styrenoid chromophore, 

yielding the styrene derivatives sty-2-sty-6. The final optimized results on the derivatization 

of the enantiopure coumarins, all of which were the first eluted enantiomers resolved by 

HPLC, are shown in Schemes 2-4 . The coumarins 3-5 were resolved by using a Chirobiotic 

TAG column, eluent heptane/ethanol and as first eluted enantiomers they are of (#)-

configuration. The coumarins 2 and 6 were resolved on Chirobiotic T on the reversed phase, 

therefore these first eluted enantiomers 2 and 6 are of (^-configuration (cf Table 11. The 
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detailed enantioselective separation of these dihydrofuroangelicins 2—6 is described in the 

Experimental section. 
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Scheme 2 Conversion of 2, 3, and 4 into styrenoids Wa cross metathesis with styrene. 
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Scheme 3 Conversion of 5 into styrenoid v&z Heck reaction with iodobenzene. 
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Scheme 4 Transformation of 6 into styrenoid vz'a combined cross metathesis and Heck 

The chemical transformations employed for the conversion of dihydrofuroangelicins 2-6 

into the corresponding styrenoids, depending on the substitution patterns of the C-C double 

bonds, are summarized as follows. 

(i) CoMverszo/z 6y cross WfA gfyre/ie (Scheme 21: The olefin cross metathesis is 

successful with 1,2-disubstituted, 1,2,2-trisubstituted, and endocyclic double bonds such as 2, 

3, and 4, respectively. Thus the reaction of 1,2-disubstituted derivative 2 with an excess 

amount of styrene, using 10 mol% of Grubbs' ruthenium catalyst 9 in CH^Clz at 40 °C for 10 

h, cleanly provided the corresponding (jE)-styrenoid derivative sty-2 in 60% yield. Similarly, 

the 1,2,2-trisubstituted derivative 3 was transformed into the corresponding styrenoid, sty-3, 

in 73% yield. Furthermore, the endocyclic double bond in the eight-membered ring of 4 also 

gave the corresponding styrenoid derivative sty-4 in 61% yield. As Grubbs and co-workers 

reported/* the thermodynamically more stable (E)-isomers could be obtained exclusively by 

the cross metathesis reaction with styrene and no (Z)-stereoisomers were observed. 

Furthermore, enantioselective HPLC analysis demonstrated that no epimerization occurs 
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during the cross metathesis reaction: starting from an enantiopure sample of 3, the 

corresponding enantiopure sty-3 was obtained in >99% enantiomeric excess. 

Table 1 l \ and CI)" spectra of sly-2 s#y-6 in aceîoiiitrile. 

substrate UV 
k / e  

CD 
Ae 

Aou amplitude 
observed 

abe con% 
atC8 

»ty«2 
321 nm (14.000) 
251 nm (20,000) 

320 nm+14.7 
250 nm -16.9 +31.5 S 
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318 nm -12 5 
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ety^ 
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ety-0 
321 nm (14,200) 
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320 nm +14.6 
247 nm -10.2 +24.8 S 

^ Au [L " mol* em 

(ii) CoMveryzon regcfzoM (Scheme 31: The 1,1 -disubstituted ecco-

methylene double bond in 5 (first eluted enantiomer) was unexpectedly inactive to the cross 

metathesis with styrene, and starting material was recovered. We therefore utilized Heck 

reaction by reaction of S with iodobenzene in the presence of Pd(OAc)z, triphenylphosphine, 

and silver carbonate in DMF at 80 °C for 5 h, to give the corresponding sty-5 in 83% yield 

(Scheme 31. 
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(iii) fAe comZwmaf TnefAod q/^ cro^ TMefafA&^w aW Z/iecA: reacfio/z 

(Scheme 41: In the case of 1,1,2-trisubstituted derivative 6, the direct transformation into the 

styrene derivative by use of either cross metathesis with styrene or Heck reaction was 

unsuccessful. Therefore, we utilized the combined method of cross metathesis with ethylene 

and Heck reaction as shown in Scheme 4. Thus the trisubstituted double bond in 6 was first 

converted into an exomethylene double bond by reaction with ethylene in the presence of 

Grubbs catalyst 9 in almost quantitative yield. Subsequently, the obtained exomethylene 

intermediate was subjected to Heck reaction, by reaction with iodobenzene, Pd(OAc)2, 

triphenylphosphine, and silver carbonate in DMF, to provide the desired styrenoid derivative 

of 6 in 66% yield for two steps. It is noteworthy that the intermolecular metathesis, Heck 

reaction, and combined chemical transformations converted all the substitution pattern of the 

C-C double bonds in 2-6 (Chart 11 into the styrenoids sty-2-sty-6 with about 1 mg sample 

under mild conditions.— 

Conformational analysis of styrenoid derivatives sty-2-sty-6 

Inspection of molecular models of 1 and sty-2-sty-6 (Chart 11 suggests strong similarity 

between the conformational spaces for all the styrenoid compounds. In particular, two main 

degrees of conformational freedom may be recognized in all cases (Fie. 21: (a) the 

rotamerism around the C8-C10 bond, described by the dihedral angle 07-C8-C10-C11 

(<fs,io); and (b) the dihydrofuranyl ring flip, which may be described by the 07-C8-C9-C9» 

torsion These two are especially relevant to the application of exciton chirality method 

because, in principle, the variation of both (4,,o and <4.9 may affect the relative arrangement of 
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the coumarin and styrene chromophores. Our previous experience on compound 1 (which 

coincides with sty-3) confirmed that both torsional modes are effective;— the presence of 

further methyl groups at C-8 and C-10 position in sty-2 and sty-4—sty-6, however, is likely to 

affect these torsions in an unpredictable way and cause some difference with respect to 1. 

* 

'xi I' 

#*4 

Fig. 2 The two lowest energy DFT (B3LYP/6-31G**, CHCI3) optimized structures of (5)-
sty-2 and (^)-sty-S. 

Knowledge of the molecular conformation in solution is essential for applying the exciton 

chirality approach. It is well-known that application of the exciton chirality CD method for 

elucidation of absolute configuration is straightforward only in those cases where no 

conformational ambiguity exists.— In the current case, however, the solution conformations 

of styrenoid derivatives sty-2 to sty-6 are not necessarily clear since the styrene moieties are 

attached to five-membered rings that can adopt variable conformations depending on the 

substitution pattern. Therefore a completely novel conformational analysis for the 
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compounds described in this paper, concentrating especially on sty-2 and sty-5, was 

performed. The results for these two models may be easily transferred to the other derivatives 

sty-4 and sty-6; as for the former, the conformational freedom of the chain at C-9 may be 

disregarded due to its negligible contribution to the CD (vwfe m/ra). 

Molecular modeling of sty-2 and sty-5. The molecular conformations of sty-2 and sty-5 

were investigated by means of DFT calculations (see Computational section for details). The 

dihydrofuranyl five-membered ring is capable of assuming two main conformations where 

the styrenyl substituent occupies a pseudo-equatorial (eg) or pseudo-axial (a%) position. For 

each eg and a% conformer, three energy minima (indicated with subscripts 0-2) were isolated 

relative to the variation around the (f&io dihedral, resulting in overall six confbrmers within 

1.3-1.5 kcal moT' (that is, with non-negligible population at room temperature). The two 

lowest energy confbrmers (a%„ and ego) for each compound are shown in Fie. 2: the relative 

energies and main geometrical parameters for all computed minima are listed in ESIf (Table 

ESI1). For both compounds, DFT calculations predict that eg and or confbrmers are almost 

equally probable. The preferred value of the angle is around 0°, corresponding to a ay» 

orientation between the C10-C11 double bond and the C8-07 bond (Fis. 21; on the other 

hand, the energy barrier between the various C8-C10 rotamers is quite low (below 4—5 kcal 

mol"'). Interestingly, such a preferred conformation is at odds with the results of DFT 

calculations for 1, which favor a strongly preferred eg conformation with dg.,o=420° (C10-

Cll double bondaym to C8-H8). 

NMR experiments on sty-2 and sty-5. Modeling results predict that compounds sty-2 and 

sty-5 may assume multiple conformations that presumably are fast exchanging in solution, 

due to the low energy barriers relative to the dg,w and torsional modes. Therefore, NMR 
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spectra represent the average conformational situation in which all confbrmers with 

significant population contribute. In fact, the 'H-NMR spectra of sty-2 and sty-5 show a 

single set of signals at room temperature in CDCI3. 

The conformational situation about the dihydrofiiranyl ring was investigated by means of 

NOE (Fie. 31 and long-range heteronuclear measurements (the numbering of protons 

(HJ and methyl (Me,) groups is according to Fie. 31. For both compounds sty-2 and sty-5, 

proton H% which resonates at higher field than H% (3.27 vs. 3.43 ppm for sty-2, and 3.25 va. 

3.46 ppm for sty-5), shows an almost twofold stronger NOE with methyl Me* with respect to 

H%. On the contrary, H* shows stronger NOEs with the protons of the styrenyl group (H# or 

Mew, and H,i) with respect to H* (Fie. 31. It may be easily concluded that the styrenyl group 

is cis to H% and fra*? to H%. It is generally observed that axial protons are upfield shifted 

with respect to equatorial protons in cyclic systems.^ This would lead to the conclusion that, 

in the average situation detected by NMR, proton H% and the styrenyl substituents are both 

pseudo-axial, while proton H* and Me* are both pseudo-equatorial. However, such 

generalization may hardly be extended to the dihydrofuranyl rings in sty-2 and sty-5; effects 

other than the axial/equatorial position are likely to determine the chemical shifts of protons 

H%/H%, in particular the coumarin and styrene ring anisotropics. 
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Fig. 3 Relevant 'H NMR NOEs measured for (6)-sty-2 and (#)-sty-5(ROESY spectra, 
mixing time 200 ms). 

The ^-couplings between protons and methyl carbon at C-8 (^*H% and 

were expected to be informative of the respective dihedral angles, and ultimately of the ^ 

torsion, through a specific Karplus-type relation (see Computational section)We found that 

the experimental pairs of Vc# values fit reasonably well with those calculated as the average 

of all the DFT-computed minima (Boltzmann-weighted at 300 K), although experimental 

values are especially closer to the estimates for the eg confbrmers (see ESÏ,t Table ESI2). 

The rotamerism around the C8-C10 bond may be depicted by means of relative NOEs 

(Fig. 31 For compound sty-5, methyl protons Me,o show similar NOE with Me* and H* 

protons, while proton H,, has twofold stronger NOE with Me* than H* and almost negligible 

with H,.. The same is true for compound sty-2, where proton shows relative NOEs in the 

order > Me*=H% and proton Hn in the order Me* > > H%. The average situation 

detected is in accord with modeling results, which predict a favored conformation with aym-

oriented C10-C11 double bond and C8-07 bond. 
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In conclusion, the combination of computational and experimental techniques discloses 

the existence of multiple and fast-exchanging conformations for compounds sty-2 and sty-5. 

However, this conformational heterogeneity does not affect the following exciton chirality 

analysis, because molecular models suggest that the relative arrangement between the 

coumarin and styrene chromophores is not dramatically influenced by the possible molecular 

motions. 

Experimental CD spectra and application of exciton chirality method 

The absorption and CD spectra of the non-styrenoid compounds 2-6 (Tie. 11 are dominated 

by a strong broad band with a maximum at 322-323 nm, 6=41000-13000. It is due to the 

electric dipole allowed HOMO-LUMO transition (band I) delocalized over the entire 7-

hydroxy coumarin chromophore.^ Instead only very weak bands are present in the 230-260 

region, where the styrene chromophore undergoes a strong m—% * transition centered around 

250 nm (substituted benzene K band), which may couple favorably with the above coumarin 

one. 

In fact, in the CD spectra in acetonitrile of compounds sty-2-sty-6 (Table 1, Fie. 4a.b. and 

5b.dl. distinctive exciton couplets appear in the 230-350 nm region, with short wavelength 

maximum at 243-254 nm, crossover around 270 nm, and long wavelength maximum at 318-

320 nm. These couplets mainly arise from the exciton coupling between the above styrene K 

and coumarin transition I; both transitions are polarized along the long axes of the respective 

aromatic systems- (see also next section). In keeping with our expectations, all compounds 

exhibit a split CD pattern typical for exciton chirality, namely, two opposite Cotton effects of 

moderate intensity (absolute amplitudes between 23-31 M"' cm"') and rather symmetrical 
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appearance (in terms of integrated areas of the two components). In particular, the exciton-

coupled CD spectra of styrene derivatives are far more intense than the inherent CD of the 

parent coumarins above 240 nm (absolute Ae less than 3 M"' cm"' around 320 nm, Fie. 1): 

therefore, the contribution of optical activity mechanisms other than the coupled-oscillator 

one is minor. Although sty-4 is endowed with a further styrene substituent, its CD spectrum 

is perfectly comparable to those of other mono-styrenoid derivatives; it is likely that, due to 

the long and flexible aliphatic chain attached at C-9, the second styrene makes only a small 

contribution to the overall CD spectrum. 
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251 nm, Ac +12 1 

CD 

3S0nm, Ac-10,9 

320 nm. « 13.200 20 

UV 251 nm.c35.IOO" 

320 nm. M +I4.e\ CD 
o 

247 mn, Ae -10 2 

321 nm. e 14,200 

UV 249 nm. e 19.900 

Fig. 4 UV (bottom) and CD (top) spectra of sty-4 and sty-6 in acetonitrile. Spectrum (a), 

(&R,97f)-sty-4,1.17 x 10" M; spectrum (b), (85)-sty-6,3.02 x 10" M. 
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Fig. 5 (a,c) Absolute sense of twist deûned by styrene K (in the front) and coumarin I 

transition (in the back) for the lowest energy confbrmers of (6)-sty-2(a) and (A)-sty-S(c). 

(b,d) Experimental (in acetonitrile, solid lines, c= 4.94 x 10" M (sty-2) and c= 1.40 % 10" M 

(sty-5)) and calculated (dotted lines) CD spectra of compounds (6)-sty-2(b) and (j()-sty-5(d). 

Calculated spectra were obtained with the DeVoe method as the Boltzmann-weighted 

average at room temperature for the six lowest energy minima computed by DFT (see text). 

Simple inspection of the molecular models leads to the conclusion that all the styrene 

derivatives showing a positive exciton couplet in the 230-350 nm region, namely sty-2 and 
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sty-6, have the (86) absolute configuration, while those showing a negative couplet, namely 

sty-3, sty-4, and sty-5, have the (87f) absolute configuration; compound sty-4 is therefore 

(8#,9#). For example, in sty-2 (Fie. 5a\ in the lowest energy DFT conformer with an (86) 

absolute configuration, a positive chirality is clearly defined by the long axes of the two 

aromatic chromophores; in other words, a clockwise twist is necessary to bring the transition 

dipole in the front in Fie. 5a (styrene K transition) onto the one in the back (coumarin 

transition I). For the second model compound sty-5, the (8#) absolute configuration for the 

lowest energy DFT conformer corresponds to a negative chirality defined by the two 

chromophores (Fie. 5cl 

Importantly, for sty-2 all six minimum energy conformations computed by DFT with (86) 

absolute configuration, define similar positive chirality; this is quantitatively confirmed by 

DeVoe calculations (see following section). Similarly, all six DFT-computed conformations 

for (8#)-sty-5 define a negative chirality. The same behavior has been observed for 

compound sty-3 (which coincides with that previously reported for 1),^ and may be safely 

considered for the remaining derivatives sty-4 and sty-6. It is apparent that, due to a 

favorable characteristic for this type of chiral coumarin and geometrical arrangement, fAe 

cAzra/zfy (fe/znaf f&e fwo ZroMJifzoM (Apo/as yôr f&g CD apecfrw/M 230 

z'j C-&, q/" 

We believe that the underlying reason for this is the relative rigidity of the 

dihydrofurocoumarin skeleton which determines a definite orientation of the styrene 

substituent at the C-8 position with respect to the coumarin ring; the sense of twist between 

the two long-axis directions is thus unambiguous for all populated confbrmers. 
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In conclusion, the current combined chemical/chiroptical protocol based on styrene as the 

CD reporter group is an efEcient and versatile method of assigning the absolute configuration 

of C-8 alkenyl substituted dihydrofuroangelicins. In particular, in the absence of substituents 

at C8-C10 which may revert the formal chirality, a CO cowp/ef m fAe Mm 

région M a o/"f&e aW Wee versa. 

Quantitative coupled-oscillator CD calculations 

In order to test the scope and limitation of the previous qualitative application of the exciton 

chirality approach to coumarin derivatives sty-2 sty-6, we undertook a quantitative 

chiroptical analysis by means of coupled-oscillator DeVoe calculations for the two model 

compounds sty-2 and sty-5. The DeVoe method^ offers a means for calculating full CD 

spectra^ in the approximation that the coupled-dipole mechanism makes the dominant 

contribution to the CD spectrum, in common with the exciton chirality method. In the current 

case it was especially interesting to compare calculated spectra for various possible 

conformations of sty-2 and sty-5, given the difficulty of obtaining experimental data 

concerning conformer populations. 

It is a necessary prerequisite for any exciton chirality application to clarify, in addition to 

the molecular conformation, the polarization directions of the coupled transition moments. In 

a previous paper,^ we obtained such information with semi-empirical CNDO/S-CI 

calculations. As a matter of fact, higher level theoretical treatments seem to be lacking for 7-

hydroxy coumarin,while available for the parent coumarin chromophore and some of its 

derivatives.^ It is noteworthy that in some special cases, a critical geometrical situation also 

renders the knowledge of the exact position of the transition dipoles within the chromophore 
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framework indispensable for application of exciton chirality.^ While this parameter is not 

experimentally accessible, it can be calculated if accurate molecular orbitals are available.— 

For these reasons, the electronic properties of 7-hydroxy coumarin chromophore were newly 

investigated prior to DeVoe calculations. 

Chromophore electronic structures. The absorption spectrum of 7-hydroxy coumarin 

chromophore exhibits, in addition to the above discussed band I (Xmax = 319 nm, 6%*% = 

13,500 for 7-hydroxy-4-methyl coumarin in acetonitrile; see Figure ESI1), a distinctive 

shoulder around 290 nm, allied to a second transition (band H).^ Weaker bands are also 

present in the 240-250 nm region (band IE). Below 220 nm strong bands appear due to 

higher energy transitions. 

The results of our electronic structure calculations (see Computational section), with both 

semi-empirical ZINDO/S-CI and TDDFT (PBE0/6-311+G(d,p) level) methods, are 

summarized in Table 2. ZINDO/S-CI predicts well the position and intensity of the observed 

bands I-IH above 230 nm; however, a fourth intense band is found at 232 nm which has no 

experimental correspondence. TDDFT calculations, on the other hand, underestimate the 

intensity of band H. A switch of the functional to B3LYP or changes in the basis size and 

inclusion of diffuse functions did not appreciably affect the calculated intensities, and the 

vertical excitation energies shifted only modestly. 

Interestingly, transition dipole directions and positions are calculated in a very similar 

way by both methods used (see structures in Table 2\ which is relevant to the chiroptical 

analysis. In particular, transitions I and II are polarized almost parallel to the coumarin long 

axis (tilt angles are less than 5° for transition I). The center of transition dipole I is almost in 

the middle of the coumarin chromophore, slightly displaced toward the pyranone ring (see 
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ESIffbr details on the transition dipole position calculations). It may be concluded that in the 

case of the red-shifted transition I of 7-hydroxy coumarin, using the semi-empirical transition 

moment direction and naively placing the dipole in the center of the chromophore, would not 

introduce any sizeable error in coupled-oscillator calculations. 

Table 2. 

Experimental and calculated electronic transitions in the 240-330 nm region for 7-
hydroxycoumarin and styrene chromophores.^ 

7-Hydroxy coumarin 

Experimental^ ZTNDO# TDDFT^ 
Trans. 

Xnax Wiiax Avmax q f A-max f ^max f G 

I 323 31.0 3.0 14.0 0.20 315 0.38 +1 293 0.32 +2 
E 292 34.2 4.0 8.5 0.14 290 0.19 +5 271 0.03 -6 
m 254 39.3 nc 0.3 0.01 237# 0.03 -44 238 0.05 -63 

Styrene 

Experimental^ ZTNDO^ 
Trans. 

^*max 'v?max A '̂max ^ f ^max f P 

K 250 40.0 4.0 30.0 0.56 243 0.65 +12 

^ &msx wavelength maximum, nm; 6equency maximum, lO^cm '; Avi/% half-height width, lO^cm"^; D 

dipolar strength, square Debye; / oscillator strength; a and P, tilt angles between transition polarization and 

chromophore long axes (see structures). 

^ From the UV spectrum of 7-hydroxy-4-methylcoumarin in acetonitrile. 

# ZINDO/S-CI calculations with 16x16 (7-hydroxycoumarin) and 8x8 (styrene) single CI. 

W TDDFT calculations with PBE0/6-311+G(d,p). 

# A further band calculated at 232 nm, /= 0.49, a =-61. 

^ From the UV spectrum of styrene in hexane. 

As for the styrene chromophore, a recent theoretical CASPT2 study afforded reliable 

transition dipole polarization for the K band.^ This is in excellent agreement with our 
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ZINDO/S-CI calculation, which also placed the center of K transition dipole very close to 

phenyl C-l carbon (Table 21 

DeVoe coupled oscillator calculations. Fig. 5b and d show the comparison between 

experimental CD spectra for compounds (#)-sty-5 and (5)-sty-2, and those calculated with 

the DeVoe method as a Boltzmann-weighted average at 300 K of DFT -computed structures 

(see Computational section for details on calculation parameters). The agreement between 

calculated and experimental CD is very good, which confirms the exciton chirality 

assignment above. The weaker CD amplitude (by about 30-35%) might be due to various 

factors, in particular, to other mechanisms of optical activity: first, the inherent CD of C-8 

alkenyl dihydrofuroangelicins 2-6, contributing to around 10-20% of the experimental 320 

nm CD band of sty-2-sty-6; second, a coupling with some high energy transitions. However, 

it must be stressed that in general the agreement between experimental and DeVoe-calculated 

intensities is expected not to be perfect, especially for such extended %-chromophoric 

systems at relatively short interchromophoric distances (around 7A between the effective 

point-dipole positions, and only 2.5 A between the closest points). 

The most important result from DeVoe calculations is that a// f&e six DFT mzzMzmwrn 

energy co7z/ôrmafzo%p /ôr gzve a ^aszfzve CD cowp/ef wzf& comparée zfzfemazfy; 

similarly, a// six cofz/brmzers gzve a rzegafrve CD coaçp/ef wzfA comparaMe 

z/zfeMJzfzes. This is a final proof that the configurational assignment made on the basis of the 

straightforward exciton chirality approach is trustworthy. In conclusion, the theoretical 

Endings above justify f/ze a#p/zcaAo/z of fAe cwrre»^ cAez»zcaZ/e%c^o/z c&zro/zfy mefAo^o/ogy 

fo yzevv a/teny/ <fz/zyJro^roa»ge/zcz/z Aomo/ogwea vyzfAow^ fAe /zee^ /or e^fe/zszve 
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co/z/brmafzofKz/ or CD ca/cw/afzo/zj, unless there is reason to suspect 

some conformational ambiguity. 

6.3. CONCLUSION 

The absolute configurations of the chiral dihydrofuroangelicins 2-6 bearing a variety of C-8 

substituted double bonds have been assigned based on a new combined chemical/chiroptical 

protocol. The method consists of the conversion of C-C double bonds into a styrenoid 

chromophore through either (i) cross metathesis, (ii) Heck reaction, or (hi) a combined 

method of cross metathesis and Heck reaction. The styrenoid derivatives sty-2-sty-6 are 

obtained in good yields and mild conditions with about 1 mg samples. They exhibit 

moderately intense and clear-cut CD couplets in the 230-350 nm region, arising from the 

exciton coupling between the coumarin chromophore (band I around 320 nm) and the 

introduced styrene chromophore (K band around 250 nm). A straightforward exciton analysis 

of the CD spectra leads to the assignment of the absolute configurations of the styrenoid 

derivatives, and therefore of the parent compounds. 

In order to test the scope and limitation of the current exciton chirality approach, 

quantitative CD calculations on sty-2 and sty-5 (as model compounds) were performed with 

the DeVoe coupled-oscillator method. The necessary geometrical and spectroscopic 

parameters were extracted from: (a) a thorough confbmational analysis in solution, with 

NMR and DFT molecular modeling; (b) semi-empirical and TDDFT electronic structure 

calculations of 7-hydroxy coumarin chromophore. Excellent agreement was seen between the 

calculated and experimental CD spectra. 
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6.4. EXPERIMENTAL 

Materials and general procedures 

Anhydrous dichloromethane and dimethylfbrmamide were dried and distilled from CaHj. 

Acetonitrile used for CD and UV-vis measurements was Optima grade. Unless otherwise 

noted, materials were obtained from a commercial supplier and were used without further 

purification. Grubbs' second generation ruthenium catalyst, tricyclohexylphosphine[l,3-

bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene][benzylidine]ruthenium(lv) 

dichloride 9, is commercially available from Strem Chemicals. All reactions were performed 

in pre-dried glassware under Ar. Purification was performed either by column 

chromatography using ICN silica gel (32-63 mesh) or by preparative TLC using silica gel 

plates, 60 F-254, 0.25 mm, E. Merck. 

'H NMR. spectra were obtained on Bruker DMX 300 or 400 MHz spectrometers and are 

reported in parts per million (ppm) relative to TMS (Ô), with coupling constants (J) in Hertz 

(Hz). 2D NMR. spectra were obtained on a Varian INOVA 600 spectrometer. 2D ROESY 

spectra were recorded by the hypercomplex method, using cw irradiation (3 kHz rf Seld), 

with the following parameters: mixing time 200 ms, 8 scans, 196 time increments, 2048 data 

points zero-filled to 1K-4K. couplings were measured by means of pulsed field gradient 

HMBC spectra, recorded by varying ^-refbcusing time T between 0.04—0.15 s (10 ms 

interval), corresponding to J = T = 3.3—12.5 Hz. values were estimated with least-

squares sinusoidal fit of the experimental cross-peaks intensities as a function ofJ.^ 

Low- and high-resolution FAB mass spectra were measured on a JEOL JMS-DX303 HF 

mass spectrometer using a glycerol matrix and Xe ionizing gas. 
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UV-vis spectra were recorded on a Perkin-Elmer Lambda 40 spectrophotometer, and 

reported as \n«/nm (fmVL mol ' cm '). The CD spectra were recorded on a JASCO-810 

spectrophotometer, using a 1 cm cell, and the following conditions: SBW 1 nm, 50 nm min', 

response 1 s, and 16 scans. The CD spectra were measured in millidegrees and normalized 

into AGmax/L mol"' cm '. 

Enantiomeric separation conditions 

Separations and collections of dihydrofurocoumarin enantiomers 2-6 were achieved using a 

HP 1050 HPLC system with UV detector, auto injector, using computer controlled Chem-

station data processing software. Two chiral stationary phases, trade named Chirobiotic T 

and Chirobiotic TAG columns (250 % 4.6 mm i.d.), were obtained from Advanced Separation 

Technologies, Inc. (Astec, Whippany, NJ, USA). The chiral stationary phases were prepared 

by bonding the chiral selectors to a 5 pm spherical porous silica gel through a linkage chain.-

Detection wavelengths were varied between 220 nm and 327 nm, which correspond to the 

two molecular absorption maxima of the dihydrofurocoumahns. Analytical separations were 

reported previously.^ The preparative separation conditions used to isolate mg quantities of 

the pure enantiomers of compounds 2-6 are as follows. Racemates 3-5 were dissolved in 

neat ethanol to a concentration of 10 mg ml*'. Up to 100 microliters of each sample were 

injected onto a Chirobiotic TAG column and eluted with heptane/ethanol, 90/10 (v/v). The 

individual enantiomers were collected manually and concentrated by evaporation at room 

temperature (21 °C). Racemates 2 and 6 were dissolved in neat methanol to a concentration 

of 5 mg ml"'. Up to 20 p.1 of each sample were injected onto a Chirobiotic T column and 

eluted in the reversed mode with ^O/methanol, 65/35 (v/v). Fractions of the individual 
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enantiomers (from successive injections) were added together after manual collection. They 

were concentrated under vacuum at room temperature (21 °C). All mobile phases were 

premixed and degassed before use. The flow rate was 1.0 ml mûr'. 

Styrenoid derivative of 2(sty-2) 

To a solution of 2 (first eluted enantiomer, 1.0 mg, 3.9 ^mol) in dichloromethane (2.0 mL) 

was added Grubbs' second generation ruthenium catalyst 9 (760 pg, 890 nmol) and styrene 

(890 nL, 7.8 jimol) at room temperature, and the mixture was stirred at 40 °C for 5.5 h. The 

reaction mixture was concentrated m vacwo to give the crude products which were purified 

by preparative thin layer chromatography on silica gel (17% ethyl acetate in hexane) twice to 

afford the corresponding styryl derivative (750 pg, 60%) as a white solid: IR (CHCI3, cm"') 

1717, 1616, 1385, 1046; 'H NMR (400 MHz, CDCI3) 01.72 (s, 3H), 2.39 (d, 3H, 0.8 Hz), 

3.29 (d, 1H,J= 16.0 Hz), 3.46 (d, 1H, 16.0 Hz), 6.09 (d, 1H, 0.8 Hz), 6.40 (d, 1H, 7= 

16.4 Hz), 6.67 (d, 1H, 16.0 Hz), 6.80 (d, 1H, 8.4 Hz), 7.24 (d, 1H, 7.6 Hz), 7.31 

(dd, 2H, J = 7.6, 7.6 Hz), 7.38 (d, 2H, J = 7.2 Hz), 7.43 (d, 1H, J = 8.8 Hz); HRTABMS 

calcd for C^H^Oa [M + H]+ 319.1334, found 319.1343. 

Styrenoid derivative of 3(sty-3) 

To a solution of 3 (Grst eluted enantiomer, 2.3 mg, 9.0 p.mol) in dichloromethane (2.0 mL) 

was added Grubbs' second generation ruthenium catalyst 9 (1.7 mg, 2.0 nmol) and styrene 

(2.1 pL, 18 nmol) at room temperature, and the mixture was stirred at 40 °C for 3.5 h. The 

reaction mixture was concentrated zm vacwo to give the crude products which were purified 

by preparative thin layer chromatography on silica gel (25% ethyl acetate in hexane) to 
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afford the corresponding styryl derivative (2.0 mg, 73%) as a white solid. The spectral data 

were in good agreement with those reported previously. 

Styrenoid derivative of 4(sty-4) 

To a solution of 4 (first eluted enantiomer, 1.5 mg, 5.3 pmol) in dichloromethane (1.0 mL) 

was added Grubbs' second generation ruthenium catalyst 9 (1.0 mg, 1.2 pmol) and styrene 

(6.1 pL, 53 pmol) at room temperature, and the mixture was stirred at 40 °C for 2.0 h. The 

reaction mixture was concentrated wz vacwo to give the crude products which were purified 

by preparative thin layer chromatography on silica gel (17% ethyl acetate in hexane) twice to 

afford the corresponding styryl derivative (1.5 mg, 61%) as a white solid: 'H NMR (400 

MHz, CDCI3) 51.38-1.46 (m, 2H), 1.60-1.68 (m, 1H), 1.84-1.89 (m, 2H), 2.14-2.17 (m, 

2H), 2.31-2.40 (m, 1H), 2.38 (d, 3H, 0.8 Hz), 3.77 (dd, 1H,J = 13.6, 7.6 Hz), 5.42 (dd, 

1H, 8.0, 8.0 Hz), 6.09 (d, 1H, J = 1.2 Hz), 6.11 (ddd, 1H, 16.0, 7.2, 7.2 Hz), 6.29 (d, 

1H, 16.0 Hz), 6.44 (dd, 1H, 16.0, 8.0 Hz), 6.80 (d, 1H,J= 8.4 Hz), 6.82 (d, 1H, J = 

16.4 Hz), 7.15-7.19 (m, 1H), 7.25-7.38 (m, 7H), 7.41-7.44 (m, 3H). 

Styrenoid derivative of 5(sty-5) 

To a solution of 5 (25.0 mg, 97.5 pmol, an entry of the best yield obtained was shown here 

during optimization of the reaction conditions using the racemic sample) in 

dimethylfbrmamide (2.0 mL) was added iodobenzene (21.8 pL, 195 pmol), palladium(n) 

acetate (1.31 mg, 5.85 pmol), triphenylphosphine (3.07 mg, 11.7 pmol), and silver carbonate 

(53.8 mg, 195 pmol) at room temperature. After the reaction mixture was stirred for 2.5 h at 

80 °C, H2O was added, and the resulting mixture was extracted with ethyl acetate. The 

organic layers were combined, washed with H2O, brine, dried over Na^SO^, filtered and 
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concentrated m vacuo to give the crude products, which were purified by column 

chromatography on silica gel (from 9% to 25% ethyl acetate in hexane) and then by 

preparative thin layer chromatography on silica gel (9% ethyl acetate in hexane) five times to 

afford the corresponding styryl derivative as its 2.7 : 1 mixture of sty-5 and the minor isomer 

with an internal double bond (27 mg, 83%). These isomers were separated by HPLC using a 

YMC-Pack ODS-AM column (S- 5 pm, 120 A, 25 cm % 10 mm) eluted with ethyl 

acetate/hexane (1 : 9) at 1 mL mirr', while monitoring at 254, 280, and 318 nm. The 

retention times are 87 (major isomer sty-5 as a white solid) and 82 (minor isomer with 

internal double bond) min: IR (CHCI3, cm ') 1724, 1616, 1385, 1051; 'H NMR (400 MHz, 

CDCI3) 51.69 (s, 3H), 1.93 (d, 3H, 7= 1.6 Hz), 2.40 (d, 3H, 7= 1.2 Hz), 3.27 (d, 1H, 16.0 

Hz), 3.48 (d, 1H,J= 16.0 Hz), 6.08 (d, 1H, 1.2 Hz), 6.68 (s, 1H), 6.80 (d, 1H,J= 11.6 

Hz), 7.20-7.26 (m, 3H), 7.33 (dd, 2H, 7.4, 7.4 Hz), 7.44 (d, 1H, J = 8.5 Hz); "C NMR 

(100 MHz, CDCI3) 514.6, 19.2, 26.6, 38.5, 93.6, 106.6, 111.0, 113.2, 113.8, 123.9, 125.4, 

126.4, 127.9,128.9, 137.2,139.1, 150.8, 152.9, 160.9, 162.4; HRFABMS calcd for 

[M + H]+ 333.1490, found 333.1486. 

Styrenoid derivative of 6(sty-6) 

To a solution of 6 (first eluted enantiomer, 2.2 mg, 8.6 pmol) in dichloromethane (2.0 mL) 

was added Grubbs' second generation ruthenium catalyst 9 (1.7 mg, 2.0 pmol) and styrene 

(2.0 pL, 17 pmol) at room temperature, and the mixture was stirred at 40 °C for 7.0 h. The 

reaction mixture was concentrated m vacwo to give the crude products which were roughly 

purified by column chromatography on silica gel (from 9% to 17% ethyl acetate in hexane) 

to afford the corresponding exo-methylene derivative (2.5 mg, quant.) as a white solid. The 
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obtained compound was used for the next Heck reaction without further purification: 'H 

NMR (400 MHz, CDCI3) 81.78 (s, 3H), 2.39 (s, 3H), 3.19 (dd, 1H, 16.4, 8.0 Hz), 3.52 

(dd, 1H, 16.0, 9.6 Hz), 4.96 (s, 1H), 5.11 (s, 1H), 5.35 (dd, 1H, 8.8, 8.8 Hz), 6.10 (s, 

1H), 6.78 (d, 1H, 8.4 Hz), 7.41 (d, 1H, /= 8.4 Hz). 

To a solution of the exo-methylene derivative obtained above (2.5 mg, 10 pmol) in 

dimethylfbrmamide (1.0 mL) was added iodobenzene (2.3 pL, 21 pmol), palladium(n) 

acetate (0.14 mg, 620 nmol), triphenylphosphine (0.32 mg, 1.2 pmol), and silver carbonate 

(5.7 mg, 21 pmol) at room temperature. After the reaction mixture was stirred for 3.5 h at 80 

°C, HzO was added, and the resulting mixture was extracted with ethyl acetate. The organic 

layers were combined, washed with H2O, brine, dried over NazSO^ filtered and concentrated 

ZM vacuo to give the crude products, which were purified by column chromatography on 

silica gel (25% ethyl acetate in hexane) twice to afford the corresponding styryl derivative as 

its 5 : 1 mixture of sty-6 and the minor isomer with an internal double bond (1.8 mg, 66% in 

two steps). These isomers were separated by HPLC using a YMC-Pack ODS-AM column (S-

5 pm, 120 A, 25 cm % 10 mm) eluted with ethyl acetate/hexane (1 : 9) at 1 mL min \ while 

monitoring at 254,280, and 319 nm. The retention time of the major isomer sty-6 is 111 min: 

'H NMR (400 MHz, CDCl,) 61.89 (d, 3H, / = 1.0 Hz), 2.40 (s, 3H), 3.29 (dd, 1H, 16.4, 

7.9 Hz), 3.60 (dd, 1H, 7= 16.4, 9.9 Hz), 5.49 (dd, 1H, 9.5, 9.5 Hz), 6.11 (s, 1H), 6.65 (s, 

1H), 6.81 (d, 1H, 8.5 Hz), 7.18-7.35 (m, 5H), 7.43 (d, 1H, J= 8.6 Hz); HRFABMS calcd 

for CwHwOa [M + H]+ 319.1334, found 319.1326. 

COMPUTATIONAL SECTION 

Molecular modeling 
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All DFT calculations were run with Jaguar 4.2 (SchrOdinger, Inc., Portland OR) with B3LYP 

functional, and 6-31G* or 6-31G** basis sets, either m vacuo or in CHCL (GB/SA solvation 

model), with default parameters and convergence criteria. Initial eg and ox geometries for 

sty-2 and sty-5 were built starting from previously DFT optimized structures of 1,- and pre-

optimized with DFT at the B3LYP/6-31G* level. Angle dg w was then scanned by 15° steps 

followed by geometry relaxation at the B3LYP/6-31G* level m vacuo. For each eg and ox 

conformer, three energy minima were isolated, which were finally optimized at the 

B3LYP/6-31G** level in CHCl,. The resulting relative energies for all minima are reported 

in ESIf (Table ESI1); the two lowest energy confbrmers for each compound are showed in 

Fie. 2. 

Electronic structure calculations 

TDDFT calculations^ were run with Gaussian 03 (Gaussian, Inc., Pittsburgh PA) with either 

B3LYP** or PBEO^ functionals, and various basis sets (6-31G(d,p), 6-311G(d,p), 6-

311+G(d,p), aug-cc-pVDZ), solving for up to 12 excited states, vacuo; a selected result is 

showed in Table 1. ZINDO-S/CI calculations^ were run with Hyperchem 7.1 (Hypercube, 

Inc., Canada) with default parameters and convergence criteria, including the highest 16 (8 

for styrene) occupied and the lowest 16 (8 for styrene) virtual orbitals in the CI. Input 

structures for all calculations, having C, symmetry, were optimized with DFT at the 6-31G** 

level m vacuo. 

Coupled-oscHlator calculations 

DeVoe calculations were run with a Fortran program developed by Hug DFT -optimized 

structures (B3LYP/6-31G**) were used as input geometries; average CD spectra were 
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calculated as Boltzmann-weighted at 300 K, using DFT energies. Spectroscopic parameters 

(transition frequency, dipole strength and half-height bandwidth) were extracted from the UV 

spectrum of 7-hydroxy-4-methyl coumarin in acetonitrile and styrene in hexane, and are 

summarized in Table 2. Transition moments directions were obtained with TDDFT and 

ZINDO-S/CI calculations for 7-hydroxy coumarin, and with ZINDO-S/CI calculations for 

styrene, and are shown in Table 2. Transition moment positions were estimated using the 

molecular orbitals resulting from ZINDO/S-CI and TDDFT methods (PBEO/6-311 +G(d,p)), 

using the procedure described by Mason,- with both dipole-length (DL) and dipole-velocity 

(DV) formulations. In the latter case, average expectation values of the dipole-velocity 

elements for C-C and C-O bonds, <Vc_c> and <Vc_o>, were taken from Inskeep ef 

further details about the DL and DV calculations may be found in the ESIf. The results for 

the positions of transition I and II dipole moments of 7-hydroxy coumarin, using ZINDO/S-

CI and TDDFT with PBE0/6-311G+(d,p) methods, are displayed in Table 2 as the center of 

the corresponding dipoles. Using TDDFT instead of ZINDO-derived parameters for the 

dipole positions and polarizations affected the DeVoe calculations to a very small extent. 

Moving the dipole positions within 0.5À from the calculated centers affected the calculated 

CD intensities without reverting the couplet sign for all structures. 

Both coumarin transitions I and II were included in the DeVoe calculations; transition II did 

not dramatically affect the computed spectra in terms of intensity, but slightly improved their 

general appearance. The very small coumarin transition m did not affect the result at all. 

Only the styrene K band was considered in the final calculations, with the view that higher 

energy bands did couple with coumarin 1-E to a much lesser extent. Higher energy coumarin 

bands were also neglected. It must be noted that, regardless of the presence of further bands 
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at higher energies, the sign of at least the first Cotton effect allied to the coumarin transition I 

will be mainly dictated by the coupling with the styrene K band, therefore the couplet sign is 

safely predicted. 

Quantitative NMR analysis 

Experimental and Vwdum values were compared with those estimated for the DFT 

calculated structures on the basis of the Karplus-type relation: = 3 6 cos 2<&- cos^H- 4.3, 

where # is one of the dihedrals ^W-cs-cwea or This equation had been purposely 

developed for Vc™<x-oH>H systems with a methyl or methylene carbon C««, attached to a 

tetrahydrofuranyl ring.% In Table ESI2 of the ESIf, experimental values (estimated error 

+0.1 Hz) are compared with those evaluated on DFT-computed structures, both for the 

lowest energy ego and a%o confbrmers as well as the Boltzmann's average at 300 K for all the 

minima. 
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Footnote 

^Electronic supplementary information (ESI) available: Relative energies and relevant 

geometrical parameters of DFT-optimized structures of sty-2 and sty-5 (Table ESI1). 

Calculated and experimental Vwe8,H9a and ^e8,H% values (in Hz) for sty-2 and sty-5 (Table 

ESI2). UV absorption spectrum of 7-hydroxy-4-methylcoumarin in CH3CN (Fig. ESI1). 

Description of the procedure for estimating transition dipole moment positions from excited-

states calculations. 
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CHAPTER? 

GENERAL CONCLUSIONS 

The research outlined in part one of this dissertation demonstrates a series of unique 

analytical applications of macrocyclic antibiotic-based CSPs in the separation of enantiomers 

of racemic compounds. It was found that the observation of the elution order reversal within 

this class of CSPs is very difficult due to the complex structure of the macrocyclic 

glycopeptides and the unavailability of their enantiomers. After a thorough study with over a 

thousand separations using these CSPs, a few cases were found in which the 

enantioselectivity of a separation could be reversed either by using a related glycopeptide 

CSP or, in one case, by altering the mobile phase composition. These compounds are 

oxazolidinones, dansyl amino acids, and sulfoxides. This behavior has not been reported 

previously for this class of CSPs. 

The method development of enantiomeric separation of chiral sulfoxide compounds 

extended the use of this class of chiral selectors to compounds with sulfur stereogenic 

centers. The teicoplanin and TAG CSPs with the normal phase mode and the reversed phase 

mode are the most effective CSP-mobile phase associations for the enantioseparation of these 

compounds. An important feature involving the chiral recognition mechanism of sulfoxide 

compounds seems to be steric repulsion. Also it appears that intramolecular stacking of 

some of the larger chiral sulfoxides can greatly affect its enantiorecognition. The 

enantiomeric retention order of the enantiomer showed a great deal of consistency for any 

single CSP and mobile phase. However, reversing the enantiomeric retention order is 
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possible by changing the CSP. The sugar moieties of teicoplanin and vancomycin were found 

to play a negative role in chiral separation of sulfoxides possiblely due to the steric 

hinderance effect of the sugar moieties. Sterically bulky groups attached to the carbon next to 

the chiral center of the analyte were found to play a positive role in enantiomeric separation 

for this class of compounds. 

One of the most successful applications using macrocyclic glycopeptide CSPs are the 

separations of chiral furocoumarin derivatives by HPLC. Furocoumarin derivative are 

important pharmacologically active compounds. Effective, high efficiency enantiomeric 

separation methods were developed using these two classes of CSPs. The whole set of over 

30 compounds were baseline separated with high efficiency. It was found that a mobile phase 

with hydrogen bonding ability (methanol, ethanol or isopropanol) is essential in the polar 

organic mode for the separation of this class of compounds. A hydroxyl group on the analyte 

near the stereogenic center greatly enhanced its enantioselectivity with all CSPs in all mobile 

phase modes. Hydrophobic interactions are important in the RP mode. Steric repulsive 

effects are very important for achieving chiral recognition on all three CSPs, and in both the 

NP and RP modes. However, the steric bulk near the chiral center of the dihydroangelicin 

tends to enhance the NP enantiomer separations and inhibit the corresponding RP 

separations. The exact opposite trend is seen for dihydropsoralens. The absolute 

configuration of selected, collected enantiomers has been determined and therefore the 

enantiomer elution orders for these particular compounds on a particular CSP under specific 

mobile phase conditions have been determined. 
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The absolution configuration determinations of the dihydrofurocoumarins provide the 

possibility of assessing the biological activity of single enantiomers. This work expands the 

application of the exciton chirality method to the determination of the absolute configuration 

of dihydrofurocoumarins for the first time. Since this method requires two chromophores 

(one on different substituents off the stereogenic center) appropriate derivatization methods 

followed by chiral separation were used. The absolute configurations of most of the 

dihydrofuroangelicin enantiomers were determined using this newly developed approach. 

For future efforts, the selective permethylation of the teicoplanin aglycon will be very useful 

in helping to elucidate the chiral recognition mechanism by comparing the separations of 

enantiomers using native teicoplanin, teicoplanin aglycon and the methylated form as CSPs. 

Preliminary results of this effort confirmed that the amine group on teicoplanin aglycon is 

believed to be a chiral recognition site for the separation of amino acids. 

A linear free energy solvation model developed by Abraham can also be a very useful tool to 

characterize the different interactions that occur between solutes and the CSPs with a fixed 

mobile phase in HPLC. Our preliminary results showed that chiral recognition responsible 

interactions between the analytes and the CSP could be recognized by the application of this 

linear free energy salvation model. 

Some molecular modeling programs can also be used to understand the chiral recognition 

process. It is my hope that the mechanism by which the macrocyclic antibiotics are able to 

separate and resolve enantiomers will be completely understood in the future. 
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